Приложение 6. Способы и методы снижения уровней природных радионуклидов в питьевой воде

Приложение 6

(справочное)

СПОСОБЫ И МЕТОДЫ

СНИЖЕНИЯ УРОВНЕЙ ПРИРОДНЫХ РАДИОНУКЛИДОВ В ПИТЬЕВОЙ ВОДЕ

6.1. В случаях обоснования целесообразности разработки и осуществления защитных мероприятий для каждой системы водоснабжения должны быть определены оптимальные профилактические меры. При этом учитывают следующие факторы: качество исходной воды и требуемые параметры обработанной воды, сложности в монтаже и работе оборудования, стоимость альтернативных мероприятий.

6.2. Возможными защитными мероприятиями являются:

- организация водоснабжения за счет альтернативного источника;

- смешение воды из различных источников (подготовленной поверхностной или подземной воды с меньшим количеством радионуклидов из другого геологического горизонта).

Преимуществом данных методов является отсутствие дополнительных проблем, связанных с утилизацией отходов.

6.3. В случаях, когда невозможно использовать варианты, указанные в п. 6.2, для улучшения качества воды применяют методы очистки воды от радионуклидов: физические (дистилляция, дегазация), химические (реагентные, ионного обмена), мембранные, электрохимические и комбинированные.

В результате обработки воды могут образовываться отходы с повышенным содержанием радионуклидов.

6.4. Как стабильные, так и радиоактивные вещества могут находиться в различных формах (ионной, молекулярной) и, следовательно, в виде различных растворов (истинных, коллоидных) или во взвешенном состоянии. Выбор метода очистки воды в значительной мере зависит от ее радионуклидного состава, уровней активности и формы, в которой находятся основные дозообразующие радионуклиды.

Приоритетными способами удаления радионуклидов из воды являются:

для урана - ионный обмен, мембранные методы (нанофильтрационные и обратноосмотические);

для радия - ионный обмен, мембранные методы (нанофильтрационные и обратноосмотические);

для свинца и полония - ионный обмен, мембранные методы (нанофильтрационные и обратноосмотические), угольная фильтрация.

Эффективность существующего оборудования для обезжелезивания воды изменяется в диапазоне для радона от 0 до 90%, для изотопов урана, радия, свинца и полония от 0 до 100% в зависимости от применяемого метода.

6.5. Из числа применяемых наиболее простые и обычно наиболее экономичные - осадительные методы, широко используемые в практике водоподготовки. Радионуклиды можно удалить путем прямого осаждения, соосаждения или адсорбции на получающемся осадке.

Осаждение. При изменении pH (нейтрализация: кислые - известью, щелочные - кислотами) концентрации большинства растворенных примесей уменьшаются в сотни и тысячи раз.

Коагуляция. Вещества, находящиеся в воде в коллоидном состоянии (гидрозоли), под влиянием коагулянта образуют хлопья и выпадают в осадок (гидрогели), механически увлекая за собой крупную взвесь. Одновременно образующиеся хлопья коагулянта адсорбируют на своей поверхности и увлекают на дно коллоидные и тонкодиспергированные частицы, т.е. обеспечивают удаление примесей путем их адсорбции и соосаждения. Наиболее эффективны процессы коагуляции в щелочной среде. В качестве коагулянтов используют гидроокись алюминия, железа, фосфаты с известью, дубильную кислоту или танин с известью и др.

Поскольку различные радионуклиды находятся в различных формах, эффективность их удаления посредством данного метода далеко не однозначна. Например, при использовании в качестве коагулянта гидроокиси алюминия или железа можно эффективно удалить все катионы, за исключением щелочных и щелочноземельных металлов, анионы же удаляются лишь в небольшой степени.

Коагуляция и отстаивание применяются на практике в сочетании с фильтрацией через песчаные фильтры, которые используют исключительно для механической задержки взвешенных частиц, не успевших осесть в отстойниках. Небольшая сорбционная емкость этих устройств исключает возможность использования их как самостоятельных очистных агрегатов.

Эффективность очистки с применением метода коагуляции и отстаивания для разных растворов составляет от 0% до 90%. Рассмотренные методы можно применять для обработки относительно больших объемов воды с низкими уровнями радиоактивности, которые требуется уменьшить примерно вдвое.

Преимуществом осадительных методов очистки воды кроме экономичности является их универсальность, т.е. способность обезвреживать воду с содержанием разнообразных примесей (механических, химических) и различного радионуклидного состава. Недостаток данных методов - образование значительного количества активных шламов (преимущественно в виде осадков), нуждающихся в дополнительной обработке, последующем удалении и захоронении.

6.6. Электродиализ и электрокоагуляция. Метод электродиализа

основан на удалении из раствора ионов растворенных веществ путем

избирательного их переноса через мембраны, селективные к этим

ионам, в поле постоянного электрического тока. Эффективность

метода достаточно высока: коэффициент очистки от радиоактивных

веществ для альфа-излучателей (плутоний, полоний) составляет 100%,

-2

для бета - 99,8 - 100,0. Содержание солей уменьшается с 10 до

-5

10 %. Относительная простота и высокая эффективность позволяют

считать его перспективным для практического использования. Однако

широкое внедрение его в практику пока встречает затруднения

технического и экономического характера.

Другим перспективным методом безреагентной очистки является электрокоагуляция. Принцип данного метода основан на свойствах металлического (алюминиевого) анода под действием постоянного тока переходить в очищаемую воду, образовывая в ней хлопья гидроокиси алюминия, сорбирующие на поверхности находящиеся в воде примеси и увлекающие их на дно. Большим преимуществом его является малое количество образующихся шламов.

6.7. Ионный обмен. Данный метод базируется на способности некоторых материалов (ионитов) вследствие обмена ионов извлекать из растворов находящиеся в них катионы, анионы (или и те и другие одновременно) как стабильных, так и радиоактивных нуклидов. Цикл очистки воды с помощью ионитов состоит из последовательно проводимых операций фильтрования и регенерации.

В качестве ионитов в настоящее время используют органические и неорганические соединения. Из органических наиболее широко применяются синтетические смолы (катиониты и аниониты) различных марок, сульфоуголь, цеолиты и др.

Основные технологические требования к ионитам сводятся к следующему: хорошая рабочая ионообменная способность, возможно большая скорость ионообмена, легкость регенерации с использованием малого объема промывной жидкости, ограниченная набухаемость и невысокое гидравлическое сопротивление при рабочей скорости фильтрации, устойчивость к механическим (истиранию), химическим (кислоты, щелочи, окислители) и температурным воздействиям. Иониты не должны окрашивать воду, придавать воде запах, привкус, мутность, изменять pH за пределы 6,5 - 8,5, выделять в воду вредные для здоровья вещества, увеличивать содержание в очищаемой воде микроорганизмов.

При проектировании ионообменных установок учитывают все эти факторы и в необходимых случаях экспериментально определяют оптимальные технологии сорбции-десорбции.

Высокая эффективность метода ионного обмена, полная возможность использования его при любом объеме вод позволяют его считать одним из наиболее перспективных для очистки воды от радионуклидов.

Сильноосновные аниониты в форме хлорида удаляют более чем 95% урана независимо от качества сырой воды. Эффективность удаления радия в системах, содержащих сильнокислые катиониты в форме натрия, составляет 90 - 95%.

Эффективность удаления свинца и полония изменяется в широком диапазоне (35 - 100%). Механизм удаления этих нуклидов - только частично ионный обмен. Большая часть этих нуклидов в естественных водах находится в виде коллоидных частиц и их уменьшение связывают с адсорбцией на ионообменных смолах.

Вместе с тем все системы на основе ионного обмена имеют и ряд общих недостатков:

Процессы ионного обмена не являются специфическими для радиоактивных веществ и наряду с радиоактивными на ионообменных материалах задерживаются стабильные нуклиды. Это обстоятельство существенно влияет на эффективность очистки, которая в значительной степени зависит от присутствия в водах стабильных форм химических элементов, от нуклидов которых надо освободиться.

На эффективность работы ионообменных фильтров, независимо от их конструкции (колонки, пластины), могут существенно влиять различные примеси, содержащиеся в водах (взвешенные вещества, мыла, масла и др.). Эти примеси, заполняя поры фильтров или обволакивая поверхность ионообменного материала, по существу препятствуют процессу фильтрации и ионообмена. Наличие в воде природных органических веществ (в том числе и органического железа) также может ухудшать фильтрационные и ионообменные свойства ионитов, "зарастанию" смолы органической пленкой, которая одновременно служит питательной средой для бактерий. Оба этих фактора требуют более частой регенерации, что приводит к увеличению расхода соли.

В процессе эксплуатации ионообменные фильтры накапливают радиоактивные вещества. В результате содержание природных радионуклидов в отработавших свой ресурс патронах может достигать 100 Бк/г. При регенерации фиксированные ионообменным фильтром радионуклиды переходят в растворы, активность которых превышает активность необработанных вод в 10 - 30 раз. Образование отходов с повышенным содержанием природных радионуклидов может ограничить применимость этой технологии для частных домов.

Необходимо отметить также, при ионировании воды на анионообменных смолах одновременно с извлечением радионуклидов уменьшается мутность воды, удаляются фосфаты, сульфаты, нитраты. При фильтровании воды через катионообменные смолы сокращается содержание железа и марганца, кальция, магния, сульфатов, хлоридов. Более или менее полное удаление общей жесткости отрицательно оценивается с точки зрения влияния на здоровье и приводит к увеличению коррозионной активности воды. Этого можно избежать, используя вместо смол в натриевых формах смолы в форме кальция.

Тем не менее, именно применение ионообменных смол представляется наиболее перспективным направлением в деле борьбы с радионуклидами в воде. Задача заключается в том, чтобы подобрать такую комбинацию ионообменных смол (подчас весьма сложную и многокомпонентную), которая была бы эффективна в достаточно широких пределах параметров качества воды.

6.8. Мембранные методы. Среди методов водоочистки особое место занимают высокотехнологичные и эффективные мембранные технологии. Принцип их работы состоит в пропускании исходной воды под давлением через полупроницаемую мембрану, которая разделяет воду на два нигде не соприкасающихся потока: фильтрат (очищенная вода) и концентрат (сконцентрированный раствор примесей).

Мембрана представляет собой микропористый материал. Размер задерживаемых примесей определяется размером пор мембраны. Все примеси, превосходящие по размеру поры мембраны, удаляются в одну стадию. Различают четыре типа мембран:

- микрофильтрационные (MF);

- ультрафильтрационные (UF);

- нанофильтрационные (NF);

- обратноосмотические (RO).

RO-мембраны являются самыми селективными. Они задерживают 97 - 99% всех растворенных веществ. UF-мембраны задерживают только крупные органические молекулы (молекулярный вес больше 10000), коллоидные частицы, микроорганизмы. NF-мембраны занимают промежуточное между RO и UF положение. Они пропускают 15 - 90% солей в зависимости от структуры мембраны. MF-мембраны являются самыми грубыми среди перечисленных типов. Они задерживают только взвешенные и высокомолекулярные частицы, превышающие 0,1 мкм.

Основным критерием для выбора мембранной технологии являются требования к качеству очищенной воды. RO-системы используются, когда необходимо удалить неорганические соли и большинство примесей; NF-системы применяются, когда нужно снизить содержание неорганических солей лишь частично; UF-системы используются, когда необходимо удалить только высокомолекулярные органические соединения и взвеси. MF применяют в основном на этапе предварительной очистки.

Большинство NF- и RO-систем одинаково способны удалять свыше 90% радиоактивных урана, радия, свинца и полония.

Преимуществами мембранных технологий водоподготовки помимо степени очистки воды являются низкие энергозатраты, отсутствие химических реагентов, работа в автоматическом режиме, простота эксплуатации и обслуживания, компактность.

Недостатками мембранных методов являются:

- низкая минерализация очищенной воды и пониженное значение pH;

- в некоторых случаях образование отходов с повышенным содержанием природных радионуклидов (отработанные мембраны, обратные воды).

Кроме того, практическое применение мембран ограничено следующими факторами:

- мембраны даже в большей степени, чем гранулированные фильтрующие среды и ионообменные смолы, критичны к "зарастанию" органикой и забиванию поверхности нерастворимыми частицами. Это означает, что мембранные системы требуют достаточно тщательной предварительной подготовки воды, в частности - удаления взвесей и органики;

- высокая стоимость. Их применение рентабельно только там, где требуется очень высокое качество воды (например, в пищевой и фармацевтической промышленности, медицине, производстве вооружений, космических исследованиях).

6.9. Дистилляция, перегонка, разделение жидких смесей на отличающиеся по составу фракции. Процесс основан на различии температур кипения компонентов смеси. Дистилляция производится с целью освобождения жидкости от взвешенных в ней примесей или для выделения более летучих частей.

В зависимости от физических свойств компонентов разделяемых жидких смесей применяют различные способы дистилляции (простая, фракционная, равновесная, молекулярная). Простая дистилляция проводится частичным испарением кипящей жидкой смеси, непрерывным отводом и последующей конденсацией образовавшихся паров. При этом механические частицы, содержащиеся в воде (включая бактерии, вирусы, а также коллоиды и взвешенные частицы), оказываются слишком тяжелыми, чтобы быть подхваченными паром. Одновременно почти все растворенные в воде химические вещества (включая соли железа, других тяжелых металлов, соли жесткости, радионуклиды и т.д.) достигают предела своей растворимости (за счет повышенной температуры и увеличения концентрации) и выпадают в осадок.

Дистиллированную воду достаточно широко используют в промышленности, медицине, в химических лабораториях. В быту же дистилляторы не нашли широкого применения по следующим причинам:

- бытовые дистилляторы имеют малую производительность (около 1 л/ч);

- в бойлере дистиллятора постоянно образуются осадок, накипь и т.п., которые необходимо регулярно удалять;

- дистилляторы излучают тепло и в довольно значительных количествах;

- дистилляторы потребляют значительное количество электроэнергии, что для многих применений делает их использование менее рентабельным, чем обратный осмос или деминерализация на ионообменных смолах.