6.10. Оценка возможности снижения потребления продукции из цветных металлов в связи с расширением применения заменителей (полимеры, композиты и т.п.)

В настоящее время в некоторых областях применения цветных металлов продукция из полимеров и композитов создает конкуренцию аналогичной металлической продукции.

Конкуренцию медной продукции полимеры могут составлять в сфере производства медных труб (в частности, для холодного и горячего водоснабжения), а также производства кабелей (в сфере телекоммуникаций).

В настоящее время с медными трубами успешно конкурируют пластиковые (особенно из полипропилена, а также из сшитого полиэтилена или полипропилена) трубы, достоинствами которых являются: низкая стоимость; устойчивость к коррозиям; малый вес и простота монтажа. Темпы роста производства пластиковых труб в России составляют 30 - 35% в год.

Полимерные трубы приобретают все большую популярность, однако медные трубы пока прочно занимают свою нишу, особенно в сфере горячего водоснабжения и отопления благодаря своим преимуществам в эксплуатации.

В кабельной промышленности медные кабели активно вытесняются оптоволоконными в сфере телекоммуникаций. Основной объем меди, используемой для производства кабелей (90%), сосредоточен в продукции энергетического назначения (силовые и контрольные), а также в кабелях и проводах, комплектующих для машин, оборудования и приборов (обмоточные, эмалированные, штанговые, монтажные, авиационные, автотракторные и др.). Оптиковолоконная кабельная продукция применяется в основном в сфере телекоммуникаций.

Тем не менее, в будущем оптоволоконный кабель считают альтернативой медному и в других сферах, исходя из постоянного удорожания меди и истощения ее запасов.

Однако использование электрических кабелей в сфере связи и телекоммуникаций все еще велико. Так, для поддержания работоспособности линий связи, находящихся в эксплуатации, необходимо производство медных кабелей различного назначения (магистральные, зоновые, телефонные, станционные) в объеме не менее 3% от длины эксплуатируемых кабельных линий.

Таким образом, при явной тенденции вытеснения электрических кабелей связи оптоволоконными, 10 - 20% производства кабелей связи будет и впредь приходиться на электрические.

В системах газоочистки и пылеулавливания применяют свинцовые трубы и электроды. В настоящее время разработана и успешно применяется технология очистки промышленных газовых выбросов с помощью мокрых полимерных электрофильтров. В электрофильтрах в конструкции систем осадительных и коронирующих электродов применен специальный композиционный полимерный материал.

Областью применения электрофильтров являются химическая, нефтеперерабатывающая промышленность, цветная металлургия, производство минеральных удобрений и другие отрасли промышленности, где требуется очистка газов от агрессивных компонентов - взвешенных частиц (туманов и капель кислот, возгонов цветных металлов, фтористого водорода).

На сегодняшний день изготовлено, поставлено и пущено в эксплуатацию свыше 20 электрофильтров типа ЭТМ с полимерной коронирующей и осадительной системами; модернизировано около 60 мокрых электрофильтров с заменой осадительной и коронирующей систем на полимерные.

Цинк и магний активно используются в качестве протекторов для защиты металлических конструкций. В сфере производства протекторов и протекторных анодов уже существует конкуренция цветных металлов с композитными материалами. Так, разработаны протекторные полиуретановые цинконаполненные грунты для холодного цинкования. Защитные свойства обеспечиваются сочетанием цинкового и полиуретанового компонентов: полиуретаны создают барьерную защиту, а цинк обеспечивает электрохимическую защиту.

Такие материалы применимы для защиты промышленных конструкций из чугуна, углеродистой и низколегированной стали, отверждаются влагой воздуха и не дают разрушаться металлу вследствие коррозии, воздействия морской или простой воды, промышленной атмосферы, химических соединений. Они рекомендуются к применению в судостроительной, нефтегазовой, энергетической, сельскохозяйственной и других отраслях.

Для алюминия пластики представляют конкуренцию в изготовлении упаковки (банки, тубы, фольга), а также в сфере производства профильно-погонажных изделий.

Однако необходимо отметить, что в настоящее время сферы применения профилей из алюминия и поливинилхлорида (ПВХ) все же различны. Так, алюминиевые сплавы используют в основном при изготовлении архитектурно-строительных системных профилей (в том числе для остекления балконов и лоджий), а также профилей для машиностроения (в том числе авиастроения, транспортного машиностроения и т.д.). ПВХ идет на производство оконных и дверных профилей, а также сайдинга, плинтусов и др.

В секторе упаковки потребительских товаров доля пластиковой упаковки растет. Так, за последние 10 лет в структуре российского рынка упаковки доля полимеров выросла с 18% до 38%. Однако рост этот произошел в основном за счет снижения доли бумажной, картонной и деревянной (с 51% до 40%), а также стеклянной тары (с 28% до 14%). При этом объем производства алюминиевой упаковки практически не изменился (доля составляет порядка 5 - 8%).

В настоящее время доля пластиковой упаковки продолжает увеличиваться. Однако алюминиевая упаковка сохраняет свою значимость благодаря ряду преимуществ перед стеклянной и пластиковой тарой: прежде всего, достаточная механическая прочность, технологичность, легкость. Кроме того, алюминиевую банку можно подвергнуть вторичной переработке. Тем не менее, несмотря на высокую востребованность алюминия в рассматриваемых областях применения, в дальнейшей перспективе высока вероятность конкурирования его с пластиками. Пластиковая тара намного дешевле и доступней металлической, также она не боится влаги, не нуждается в дополнительном покрытии.

При этом разрабатываются все новые материалы, в том числе композитные, которые с успехом могут в будущем конкурировать с алюминием. Так, разработан новый отечественный материал для консервных банок - ламистер (состоит из 4 слоев: полипропиленовая пленка, адгезив, алюминиевая фольга, лак), в 2 раза легче алюминиевой консервной ленты.

В автомобилестроении алюминий конкурирует с композитами. Композит состоит из армирующего материала (волокнистый наполнитель) и связующего вещества или матрицы (смола). По сравнению с металлами и их сплавами композитные материалы имеют лишь один серьезный недостаток: их получение в настоящее время более технологоемкий и, как следствие, более дорогой процесс, нежели получение металлических сплавов. Поэтому применение композитов растет наиболее быстрыми темпами в наукоемких областях, таких как авиа- и ракетостроение.

В автомобилестроении уже сегодня композиты из стекловолокна успешно конкурируют с алюминием и сталью. В среднем в мире на производство одного автомобиля затрачивается 8 кг стекловолокна (в России - 2,5 кг), по прогнозам, к 2020 г. этот показатель удвоится. Композиты применяют при изготовлении таких деталей автомобиля, как бамперы, спойлеры, обтекатели, декоративные панели, днище, элементы защиты корпуса и др. Полимерные карбоволокниты по мере удешевления их производства все чаще используются в изготовлении кузовов и шасси, сверхнадежных тормозных дисков.

Из множества объективных преимуществ авиационных и ракетных деталей, изготовленных из композитных материалов, можно выделить малый вес (на 60 - 80% меньше аналогичных из алюминия), отличную прочность, устойчивость к давлению, прекрасную гибкость и устойчивость к коррозии.

Использование композитов в конструкции авиалайнера позволяет снизить его вес на 15 - 30%, а ракеты или космического аппарата - до 50%, что приводит к экономии топлива и улучшению экологических показателей.

Ранее до 80% веса самолета приходилось на алюминий и его сплавы с медью, цинком и магнием (обшивка корпуса, детали двигателя и др.). В настоящее время новейшие модели самолетов содержат порядка 50% веса углепластика, 20% алюминия, 15% титана, 10% стали и 5% прочих материалов (новейшие российские разработки - SSJ 1XX и IRCUT MS 21 - 37% углепластиков, 33% алюминия, 19% титана, 7% стали, 4% прочих материалов).

В частности, углеволоконные композиты и графитопроизводные материалы применяют для изготовления капота авиадвигателя, каркаса шасси, хвостового стабилизатора, дверей, ниши для хвостового руля, закрылков, спойлеров, элеронов и др.

Из титана и титановых сплавов изготавливают детали авиадвигателей, работающие в условиях высоких температур и динамических воздействий (вращающиеся детали роторов, компрессоры и др.).

Титан вытесняется не так активно, как алюминий, поскольку он более прочный и хорошо совместим с композитами (в отличие от алюминия, который, как и сталь с композитами коррозирует). Создание композитных лопаток, превосходящих титановые, стало возможно только в самое последнее время с появлением новых материалов.

Из углепластика (чаще всего на основе полиакрилонитрильных, вискозных волокон, а также лигнина, каменноугольных и нефтяных пеков) делают носовые обтекатели ракет, детали скоростных самолетов, подвергающиеся максимальным аэродинамическим нагрузкам, сопла ракетных двигателей и прочее.

В России стимулировать развитие инновационного сегмента призвана утвержденная в 2013 г. "дорожная карта" развития отрасли производства композитных материалов (КМ) на 2016 - 2020 гг.