4.3. Анализ закономерностей изменения параметров технического состояния
4.3. Анализ закономерностей изменения параметров
технического состояния
4.3.1. В качестве параметров технического состояния (ПТС) для прогнозирования остаточного ресурса сосудов и аппаратов чаще всего используют измеренные величины возникших повреждений (глубины коррозии, величины эрозионного или механического износа, остаточной пластической деформации), данные об изменении физико-химических характеристик материалов, а также число циклов нагружения сосудов. Кроме того, для прогнозирования могут использоваться косвенные параметры (например, по изменению температуры стенок футерованного сосуда можно прогнозировать срок его эксплуатации до предельно допустимого значения температуры стенок и необходимости ремонта).
Для прогнозирования остаточного ресурса сосудов необходимо знать закономерности изменения ПТС, которые более точно могут быть определены по данным длительных наблюдений за изменением ПТС. Однако во многих практических ситуациях при диагностировании сосудов данных наблюдений бывает недостаточно. В таких случаях необходимо использовать априорную информацию о виде зависимости ПТС от продолжительности эксплуатации сосудов (см. п. 4.3.2) и возможные погрешности при контроле значений ПТС.
4.3.2. Рекомендуемые математические модели для прогнозирования остаточного ресурса сосудов.
1. Линейная модель вида h(t) = h + C t, где h и C -
0 0
постоянные величины для заданных условий; t - продолжительность
эксплуатации.
Эта модель хорошо описывает кинетику разрушения металлов при
общей коррозии и различных видах механического изнашивания (при
трении, гидро- и газоабразивной эрозии). Величина h может быть
0
положительной и отрицательной. Отрицательные значения h
0
наблюдаются в тех случаях, когда появлению внешних признаков
разрушения предшествует так называемый инкубационный период,
обусловленный накоплением микроповреждений на поверхности металла
до значений, достаточных для отделения частиц металла от
поверхности. Такой вид разрушения наблюдается при
ударно-абразивном изнашивании, а также при кавитации. Во многих
случаях значение h бывает равным или близким к нулю. Это имеет
0
место при коррозионных испытаниях некоторых чистых металлов, при
равномерной коррозии, например атмосферной, и в других случаях.
m
2. Степенная зависимость вида h(t) = C t , где C и m -
постоянные для заданных условий величины.
Модель применяется при описании многих видов коррозии поверхностей металлов (как сплошной, так и локальной), а также при коррозии под напряжением и изнашивании. Для многих случаев общей коррозии при умеренных напряжениях, а также при локальной коррозии m < 1. При высоких напряжениях (превышающих некоторое значение, называемое пороговым напряжением) m > 1.
При химической коррозии металлов, в частности при газовой, m часто имеет значения, близкие к 1/2. Изменение максимальной глубины питтингов хорошо описывается при m = 1/3.
3. Логарифмическая зависимость вида h(t) = A ln(t + C), где A и C - постоянные для заданных условий величины, в ряде случаев хорошо описывает кинетику газовой и локальной коррозии.
4. Экспоненциальная модель вида h(t) = C exp[T(t)], где C - постоянная для заданных условий величина и T(t) - некоторая функция от времени, применяется при описании кинетики общей коррозии под напряжением.
Применяются также другие математические модели для описания частных случаев разрушения элементов оборудования, включающие кроме фактора времени ряд эксплуатационных параметров.
На практике при оценке ресурса оборудования чаще всего применяется линейная модель h(t), которая во многих случаях дает оценки остаточного ресурса с некоторым запасом.
После выбора математической модели необходимо по результатам контроля ПТС определить величины коэффициентов модели и оценить их погрешности, по которым может быть вычислена достоверность прогноза остаточного ресурса сосуда (аппарата).
4.3.3. Анализ возможности использования для прогнозирования остаточного ресурса сосудов косвенных параметров.
При оценке возможности использования для прогнозирования остаточного ресурса сосуда (аппарата) в качестве ПТС какого-либо косвенного параметра необходимо определить, является ли процесс изменения данного параметра монотонным.
Большинство контролируемых параметров технологических процессов являются стационарными и немонотонными, так как подвергаются регулированию. Некоторые из них могут нести информацию об интенсивности деградации оборудования; в таких случаях при анализе записей параметров наблюдается их дрейф, то есть постепенное смещение среднего значения. Если этот дрейф не устраняется регулированием технологического процесса и определены предельно допустимые уровни параметров, то такие параметры могут быть использованы для прогнозирования ресурса оборудования.
- Гражданский кодекс (ГК РФ)
- Жилищный кодекс (ЖК РФ)
- Налоговый кодекс (НК РФ)
- Трудовой кодекс (ТК РФ)
- Уголовный кодекс (УК РФ)
- Бюджетный кодекс (БК РФ)
- Арбитражный процессуальный кодекс
- Конституция РФ
- Земельный кодекс (ЗК РФ)
- Лесной кодекс (ЛК РФ)
- Семейный кодекс (СК РФ)
- Уголовно-исполнительный кодекс
- Уголовно-процессуальный кодекс
- Производственный календарь на 2025 год
- МРОТ 2024
- ФЗ «О банкротстве»
- О защите прав потребителей (ЗОЗПП)
- Об исполнительном производстве
- О персональных данных
- О налогах на имущество физических лиц
- О средствах массовой информации
- Производственный календарь на 2024 год
- Федеральный закон "О полиции" N 3-ФЗ
- Расходы организации ПБУ 10/99
- Минимальный размер оплаты труда (МРОТ)
- Календарь бухгалтера на 2024 год
- Частичная мобилизация: обзор новостей