Документ утратил силу или отменен. Подробнее см. Справку

2.12. Требования к упаковкам, содержащим делящиеся материалы

2.12.1-С1. Требования к упаковкам, содержащим делящиеся материалы, являются дополнительными требованиями, предъявляемыми для гарантии, что упаковки с делящимся содержимым останутся подкритичными в нормальных и аварийных условиях перевозки. Все другие необходимые требования Правил должны быть удовлетворены. Система осуществления контроля критичности при перевозке предписана в разделе 5 НП-053-04 (раздел V Правил МАГАТЭ-96) (п. 671.1 TS-G-1.1).

2.12.2-С1. Упаковки, содержащие делящийся материал, которые отвечают любому требованию подпунктов а) - г) п. 2.12.2 НП-053-04, освобождаются от оценки безопасности по критичности, указанной в пп. 2.12.4 - 2.12.12 НП-053-04.

2.12.2-С2. Упаковки, содержащие делящийся материал, который удовлетворяет любому из требований, изложенных в пп. 2.12.2.а) - г) НП-053-04 (пп. 672.a) - d) Правил МАГАТЭ-96), освобождены от оценки безопасности по критичности, установленной в п. 2.12 НП-053-04 (п. 671.b) Правил МАГАТЭ-96). Обеспечение того, что критерии освобождения удовлетворяются как для отдельной упаковки, так и для партии груза, отнесено к ответственности грузоотправителя освобожденного материала (п. 672.1 TS-G-1.1).

2.12.2-С3. Первоисточником пределов, приведенных в

п. 2.12.2.в) (дефис 1) НП-053-04 (п. 672.a)(i) Правил МАГАТЭ-96),

является работа Вудкока и Пакстона [68], где минимальный объем

контейнера был равен 1 л и максимально 250 упаковок были

использованы, чтобы получать пределы делящегося материала

величиной 9,4 г для Pu-239, 16,0 г для U-233 и 16,2 г для U-235

для отдельных упаковок. Практические соображения

(последовательность и то, что величина A для PU-239 приводит к

2

количеству материала в граммах, которое должно перевозиться как РМ

особого вида или в упаковке типа B) привели к изменению

впоследствии величины предела [69] до универсальной величины 15 г.

В п. 2.12.2.в) (дефис 2) НП-053-04 (п. 672.a)(ii) Правил МАГАТЭ-96) минимальная критическая концентрация для Pu-239 равна 7,5 г/л и приблизительно 12 г/л для U-235 и U-233 для систем с водным замедлителем [70]. Эти величины соответствуют отношениям масс делящегося материала и водорода 6,7% и 10,8%, соответственно. Таким образом, водородосодержащие смеси с менее чем 5%-ным отношением масс делящегося материала и водорода имеют адекватный запас подкритичности. Хотя использование массового соотношения в критериях освобождения может быть более громоздким, чем при использовании величины концентрации (как в предшествующих изданиях Правил МАГАТЭ), эта формулировка служит более подходящей мерой для водородосодержащих смесей, кроме воды (п. 672.2 TS-G-1.1).

2.12.2-С4. П. 2.12.2.в) (дефис 3) НП-053-04 (п. 672.a)(iii) Правил МАГАТЭ-96) облегчает безопасную перевозку загрязненных отходов, содержащих делящийся материал в очень низких концентрациях (п. 672.3 TS-G-1.1).

2.12.2-С5. Соображения безопасности, лежащие в основе трех условий освобождения согласно п. 2.12.2.в) НП-053-04 (п. 672.a) Правил МАГАТЭ-96), основаны на предположении водородного замедлителя и отражателя; таким образом, применяется ограничение на присутствие потенциально более активных элементов бериллия и дейтерия (п. 672.4 TS-G-1.1).

2.12.2-С6. Каждое освобождение, предусмотренное в п. 2.12.2.в) НП-053-04 (п. 672(a) Правил МАГАТЭ-96), далее ограничено допустимым пределом массы груза. Формула для предела массы учитывает смесь делящегося материала, но формула и величины, приведенные в табл. 2.3 НП-053-04 (табл. XII Правил МАГАТЭ-96), установлены так, чтобы максимальная масса груза была не больше чем приблизительно половина величины критической массы. Таким образом, критерии освобождения обеспечивают два объекта контроля (индивидуальная упаковка и груз) для предотвращения накопления делящегося материала в количествах, которые могли бы приводить к потенциальной критичности (п. 672.5 TS-G-1.1).

2.12.2-С7. Предельное значение обогащения 1% для U-235 по п. 2.12.2.а) НП-053-04 (п. 672.b) Правил МАГАТЭ-96) является округленной величиной, немного меньшей, чем минимальное критическое обогащение U-235 для бесконечных гомогенных смесей урана и воды, опубликованное Пакстоном и Прувостом [70]. Гомогенность, рассмотренная в пункте, предназначена для исключения структурирования (упорядоченного расположения в виде решетки) слабообогащенного урана в среде замедлителя. Условлено, что к гомогенным смесям и суспензиям относятся смеси, в которых частицы равномерно распределены и имеют диаметр не более 127 мкм [VII.1], т.е. не способны проходить через экран с ячейкой 120 мкм. Концентрация может также изменяться в пределах материала; однако изменения концентрации порядка 5% не должны нарушать безопасность по критичности (п. 672.6 TS-G-1.1).

2.12.2-С8. Предел освобождения, приведенный в п. 2.12.2.б) НП-053-04 (п. 672.c) Правил МАГАТЭ-96), предписывает для раствора уранила нитрата иметь содержание обогащенного U-235 не более чем 2% по массе урана. Этот предел немного ниже, чем величина минимального критического обогащения, представленная Пакстоном и Прувостом [70] (п. 672.7 TS-G-1.1).

2.12.2-С9. В п. 2.12.2.г) НП-053-04 (п. 672.d) Правил МАГАТЭ-96) установлен предел 1 кг для партий плутония, содержащего по массе не более чем 20% Pu-239 и Pu-241. Подкритичность при перевозке этого количества плутония фактически гарантирована упаковками типа B(U) или типа B(M), которые обеспечивают адекватное разделение с другими делящимися материалами, и благодаря тому, что композиция плутония нелегко достигает критичности в системах деления на тепловых нейтронах. (Результаты анализа по методу Монте-Карло указывают, что для создания критической массы в металлической сфере при полном отражении на воде необходима масса 6,8 кг материала с композицией 80%-ого Pu-238 и 20%-ого Pu-239 по массе [71]) (п. 672.8 TS-G-1.1).

2.12.2-С10. Освобождения, согласно пункту, первоначально были задуманы для гарантии, что должны сложиться невероятные условия для таких упаковок с освобожденными делящимися материалами на транспортном средстве, чтобы вызывать аварию по критичности. Кроме накопления на транспортном средстве достаточной массы делящегося материала, этот материал должен быть впоследствии перегруппирован внутри подходящего замедляющего материала, чтобы получать плотность и форму, требуемые для критической системы. Где необходимо, освобождения обеспечивают пределы для груза для предотвращения накопления критической массы. Перевозчикам и компетентным органам следует быть бдительными на случай возможного неправильного употребления положений, связанных с пределами освобождения, что может увеличивать возможность возникновения критичности (п. 672.9 TS-G-1.1).

2.12.2-С11. Другие данные в обоснование пределов освобождения, приведенных в пункте, можно найти в [72 - 74] (п. 672.10 TS-G-1.1).

2.12.3-С1. Требуется конструирование и транспортирование упаковок, содержащих делящийся материал, осуществлять таким образом, чтобы случайная критичность была исключена. Критичность достигается, когда цепная реакция деления становится самоподдерживающейся вследствие баланса между производством нейтронов и их потерей за счет поглощения и утечки из системы. В конструкции упаковки учитывается много параметров, которые влияют на взаимодействие нейтронов (см. Приложение V настоящего Руководства и приложение VII TS-G-1.1). При проведении оценки критичности должны учитываться эти параметры и подкритичность упаковки должна обеспечиваться как в нормальных, так и аварийных условиях перевозки. Оценки следует выполнять квалифицированным лицам, имеющим опыт в области безопасности по критичности. Дополнительно к очевидному контролю за массой делящегося материала разработчик может влиять на управление критичностью любым из следующих способов:

(i) Выбор формы для системы локализации или для упаковочного комплекта влияет на утечку нейтронов из областей деления вследствие изменения соотношения поверхности к объему. Например, тонкие цилиндры или пластины имеют повышенную утечку по сравнению со сферами и цилиндрами с соотношением высоты к диаметру, близким к 1.

(ii) Выбор материала упаковочного комплекта влияет на число утекающих нейтронов, которые отражаются обратно в делящийся материал. Число нейтронов, возвращенных (или покинувших делящийся материал), и их энергии в большой степени определяются выбором материала упаковочного комплекта.

(iii) Выбор внешних размеров упаковки. Нейтроны, утекающие из упаковки, содержащей делящийся материал, могут войти в другую упаковку с делящимся материалом и произвести акт деления. Взаимодействие нейтронов может зависеть от размеров упаковки, которые определяют пространственное расположение делящегося материала и могут быть откорректированы с тем, чтобы ограничивать взаимодействие между различными частями партии материала.

(iv) Использование фиксированных нейтронных поглотителей для удаления нейтронов (см. п. 501.8 TS-G-1.1 и справку 2.12.3-С2 настоящего Руководства).

(v) Выбор конструкции упаковки для контролирования соотношения замедлителя и делящегося материала, включая уменьшение пустот, чтобы ограничивать количество воды, которая может натечь в упаковку (п. 671.2 TS-G-1.1).

2.12.3-С2. В случаях, когда безопасность по критичности зависит от присутствия нейтронных поглотителей, как отмечается в данном пункте, предпочтительнее, чтобы нейтронный поглотитель был твердым телом и неотъемлемой частью контейнера. Поглотители в виде растворов или поглотители, растворимые в воде, не соответствуют этому требованию, потому что их непрерывное присутствие не может быть гарантировано. Процедурой подтверждения или испытания следует гарантировать, что присутствие и распределение нейтронного поглотителя в элементах упаковочного комплекта соответствуют принятому в оценке безопасности по критичности. Только обеспечение количества поглощающего нейтроны материала не всегда достаточно, поскольку распределение нейтронных поглотителей в компонентах упаковочного комплекта или внутри самого содержимого может значительно влиять на коэффициент размножения нейтронов в системе. Неопределенности методов подтверждения следует учитывать при проверке на соответствие оценкам безопасности по критичности (п. 501.8 TS-G-1.1).

2.12.3-С3. Обстоятельства, которые требуется рассматривать при оценке предназначенной для перевозки упаковки и перечислены в пункте, могут повлиять на размножение нейтронов в упаковке или в группе упаковок. Эти обстоятельства типичны среди тех, которые могут быть важны, и их следует тщательно рассматривать при проведении оценок. Однако в зависимости от конструкции упаковки и специальных условий, предусматриваемых при перевозке и обращении с упаковками, может возникать необходимость рассматривания других нетипичных обстоятельств, чтобы поддерживать подкритичность упаковки при всех мыслимых условиях перевозки. Например, если результаты испытаний показывают перемещение делящегося материала или поглотителя в упаковке, при проведении оценки безопасности по критичности следует рассматривать пределы неопределенности, связанные с такими перемещениями. Следует иметь в виду, что прототип, используемый в испытании, может отличаться в деталях от промышленной модели и качеством изготовления. Размеры прототипа в заводском исполнении могут понадобиться для проверки влияния допусков на испытания. Необходимо учитывать различия между испытанными моделями и производственными моделями. Цель - получение максимально мыслимого коэффициента размножения нейтронов так, чтобы при этом была гарантирована подкритичность (п. 671.3 TS-G-1.1).

2.12.3-С4. Вода влияет на подкритичность несколькими способами. Когда она смешана с делящимся материалом, результирующее замедление нейтронов может значительно уменьшать количество делящегося материала, необходимого для достижения критичности. Как отражатель нейтронов вода также увеличивает коэффициент размножения нейтронов, хотя и не столь сильно. Если водный отражатель расположен за пределами системы локализации, он менее эффективен. Он еще менее эффективен, находясь за пределами упаковки. Толстые слои воды (~ 30 см) полной плотности между упаковками могут снижать взаимодействие нейтронов в группах до несущественных значений [75, 76]. При проведении оценки критичности следует учитывать изменения геометрии упаковки, а также условий, которые могут приводить к тому, что вода будет вести себя больше как замедлитель, чем как отражатель, или наоборот. Следует рассматривать все состояния воды, включая снег, лед, пар и струи. Эти состояния воды с низкой плотностью создают (особенно, если рассматривать наличие воды между упаковками) размножение нейтронов больше, чем наблюдаемое для воды с полной плотностью (см. приложение VII TS-G-1.1 и Приложение V к настоящему Руководству) (п. 671.4 TS-G-1.1).

2.12.3-С5. Нейтронные поглотители иногда применяются в упаковках для уменьшения эффекта замедления и вклада в размножение нейтронов за счет взаимодействия между упаковками (см. п. 501.8 TS-G-1.1 и справку 2.12.3-С2 настоящего Руководства). Типичные поглощающие нейтроны материалы, используемые для контроля критичности, наиболее эффективны, если присутствует замедлитель нейтронов для снижения энергии нейтронов. Потеря эффективности поглотителей нейтронов, например, за счет коррозии и перераспределения или, как в случае порошкового содержимого, за счет осаждения, может заметно влиять на коэффициент размножения нейтронов (п. 671.5 TS-G-1.1).

2.12.3-С6. В пункте рассматриваются обстоятельства, возникающие при изменении размеров или перемещении содержимого в процессе перевозки. При установлении запаса подкритичности следует рассматривать возможные изменения расположения упаковочного комплекта или содержимого. Изменение размеров упаковки при испытаниях в нормальных или аварийных условиях должно быть предметом рассмотрения исследователя, занимающегося оценкой подкритичности. При появлении признаков изменения размеров во время аварийного испытания исследователю следует проводить анализ чувствительности размножения нейтронов от этих изменений. Потеря делящегося материала из группы упаковок, рассматриваемых при оценке по п. 682 Правил МАГАТЭ-96, должна быть ограничена подкритичным количеством. Это подкритичное количество материала должно соответствовать типу содержимого и оптимальному водному замедлителю и отражателю в виде слоя воды полной плотности толщиной 20 см. Уменьшение расстояний между упаковками, вероятное вследствие возможных повреждений упаковки при перевозке, будет прямо влиять на взаимодействие нейтронов между упаковками; таким образом, это требует проверки. Следует рассматривать воздействие на реактивность допусков на размеры и состав материалов. Не всегда очевидно, следует ли определенный размер или содержимое материала увеличивать или уменьшать или как в комбинации они повлияют на реактивность. Может потребоваться ряд расчетов для определения максимальной реактивности системы или для разработки подходящих допущений (п. 671.6 TS-G-1.1).

2.12.3-С7. Влияние температурных изменений на устойчивость формы делящегося материала или на характер взаимодействия нейтронов требует исследования. Например, для урановых систем, где доминируют нейтроны с очень низкими энергиями (тепловые), снижение температуры приводит к увеличению размножения нейтронов. Изменение температуры может также влиять на целостность упаковки. Температуры, которые следует рассматривать, включают и те, которые возникают вследствие требований к температуре окружающей среды, определенных в п. 676 Правил МАГАТЭ-96, и те, что являются результатом установления требований к испытаниям (пп. 728 или 736 Правил МАГАТЭ-96 - по обстоятельствам) (п. 671.7 TS-G-1.1).

2.12.4-С1. Требования к демонстрации подкритичности для отдельной упаковки установлены так, чтобы определять максимальное размножение нейтронов в нормальных и аварийных условиях перевозки. При проведении оценки необходимое внимание должно уделяться результатам испытаний, требуемых в пп. 681.b) и 682.b) Правил МАГАТЭ-96, и условиям, в которых может быть принято отсутствие протечки воды, как это описано в п. 677 Правил МАГАТЭ-96 (п. 679.1 TS-G-1.1).

2.12.4-С2. Оценка требует, чтобы при определении количества 5N подкритичных упаковок рассматривались все варианты расположения упаковок, поскольку взаимодействие нейтронов, возникающее между ними в партии, может не быть одинаковым по трем направлениям (п. 681.1 TS-G-1.1).

2.12.4-С3. Оценка может включать расчеты больших конечных партий, для которых отсутствуют экспериментальные данные. Поэтому следует сделать специальное вспомогательное допущение дополнительно к другим запасам, обычно учитывающим случайные и систематические влияния на рассчитанные значения коэффициента размножения нейтронов (п. 681.2 TS-G-1.1).

2.12.4-С4. Термин "подкритичный" означает, что максимальное размножение нейтронов, скорректированное с учетом погрешности расчета, неопределенности и запаса подкритичности, должно быть менее 1,0. Специальные рекомендации по процедуре оценки и рекомендации по оценке верхнего предела подкритичности см. в приложении VII TS-G-1.1 и в Приложении V к настоящему Руководству (п. 681.3 TS-G-1.1).

2.12.4-С5. С издания Правил МАГАТЭ 1996 г. (и в НП-053-04)

испытания для аварийных условий перевозки должны предусматривать

испытание на механическое повреждение согласно п. 727.c) Правил

МАГАТЭ-96 для легких (< 500 кг) и низкой плотности (< 1000 кг/куб.

м) упаковок. Критерии для введения испытания на динамическое

раздавливание в противоположность испытанию на свободное падение,

согласно п. 727.a) Правил МАГАТЭ-96, те же, что используются для

упаковок с содержимым, большим чем 1000 A , не относящимся к РМ

2

особого вида (см. п. 656.b) НП-053-04) (п. 682.1 TS-G-1.1).

2.12.4-С6. Пункт 682.c) Правил МАГАТЭ-96 накладывает серьезное ограничение на любой делящийся материал, для которого разрешен выход из упаковки при аварийных условиях. Следует принимать все меры предосторожности для предотвращения выхода делящегося материала из системы герметизации. Множество возможных конфигураций для делящегося материала, выходящего из системы герметизации, и возможность последующих химических или физических изменений обуславливают требование, чтобы суммарное количество делящегося материала, который выходит из партии упаковок, было меньше, чем минимальная критическая масса для данного типа делящегося материала при оптимальных условиях замедления и отражения в виде 20 см слоя воды полной плотности. Следует полагать, что из каждой упаковки в партии выходит равное количество материала. Трудность состоит в демонстрации максимального количества, которое может выйти из системы герметизации. В зависимости от элементов упаковочного комплекта, которые определяют систему герметизации и систему локализации, делящийся материал может выйти из системы герметизации, но не из системы локализации. В таких случаях могут быть адекватные механизмы для контроля критичности. Назначение этого пункта, однако, состоит в том, чтобы обеспечивать должное рассмотрение любого потенциального выхода делящегося материала из упаковки, если можно предположить потерю управления критичностью (п.682.2 TS-G-1.1).

2.12.4-С7. Следует обеспечивать, чтобы рассмотренные условия оценки включали также условия менее серьезные, чем условия рассмотренных испытаний. Например, упаковка может оставаться подкритичной после испытания на свободное падение с высоты 9 м, но быть критичной при условиях, соответствующих менее серьезному удару (п. 682.3 TS-G-1.1).

2.12.4-С8. См. пп. 681.1 - 681.3 TS-G-1.1 (справки 2.12.4-С2 - 2.12.4-С4 настоящего Руководства соответственно) (п. 682.4 TS-G-1.1).

2.12.5-С1. Это требование относится к оценке критичности упаковок в нормальных условиях перевозки. Предотвращение проникновения куба с ребром 10 см рассматривалось первоначально, когда были разрешены открытые упаковки типа "птичьей клетки". Теперь это требование может рассматриваться как обеспечение критерия для оценки целостности внешнего контейнера упаковки. Существуют упаковки, имеющие характеристики, аналогичные конструкции типа "птичьей клетки", но выступы которых за пределы закрытой оболочки (птица) упаковочного комплекта существуют не для того, чтобы обеспечивать расстояние между единицами груза в группе, а, например, как ограничители удара. Если на эти выступы не возлагается функция дистанциирования единиц груза, то куб размером 10 см за или между выступами, но за пределами закрытой оболочки упаковочного комплекта, не следует рассматривать как "проникший" в упаковку (п. 675.1 TS-G-1.1).

2.12.6-С1. Выход за пределы температурного диапазона -40 °C - 38 °C может быть приемлемым в некоторых ситуациях при согласовании компетентным органом. Если оценка аспектов деления нуклидов в упаковке относительно реакции на нормативные испытания выявляет неблагоприятное влияние температуры окружающей среды, то компетентному органу следует определять в сертификате-разрешении об утверждении область температур, для которой эта упаковка утверждена (п. 676.1 TS-G-1.1).

2.12.7.2-С1. Из-за существенного влияния, которое может оказывать вода на размножение нейтронов делящихся материалов, оценка критичности упаковки требует учета присутствия воды во всех полостях упаковки в той степени, которая вызывает максимальное размножение нейтронов. Присутствие воды может быть исключено только для свободных полостей, защищенных специальными устройствами, которые должны оставаться водонепроницаемыми в аварийных условиях перевозки. Следует рассматривать вероятные условия перевозки, которые могут приводить к избирательному затоплению упаковок, ведущему к увеличению размножения нейтронов (п. 677.1 TS-G-1.1).

2.12.7.2-С2. Для того, чтобы считаться водонепроницаемой для предотвращения проникновения или утечки воды в связи с безопасностью по критичности, необходимо рассмотрение испытаний как на нормальные, так и на аварийные условия перевозки. Окончательные критерии утечки для "водонепроницаемости" должны быть установлены в проекте ТУК для каждой упаковки и быть приемлемыми для компетентного органа. Должно быть продемонстрировано, что эти критерии достигнуты при испытаниях и достижимы в промышленных моделях (п. 677.2 TS-G-1.1).

2.12.7.2-С3. Размножение нейтронов для упаковок, содержащих гексафторид урана, очень чувствительно к количеству водорода в упаковке. Вследствие этой чувствительности большое внимание уделено ограничению возможности проникновения воды в упаковки. Лицам, ответственным за испытание, подготовку, эксплуатацию и перевозку этих упаковок, следует быть осведомленными о чувствительности размножения нейтронов для гексафторида урана даже к небольшим количествам воды и гарантировать, что наличие специальных устройств, определенных здесь, строго обеспечивается (п. 677.3 TS-G-1.1).

2.12.7.5-С1. Значения неизвестных или неопределенных параметров следует выбирать так, чтобы обеспечивать максимальное значение коэффициента размножения нейтронов при выполнении оценок, описанных в пп. 2.12.1 - 2.12.12 НП-053-04 (пп. 671 - 682 Правил МАГАТЭ-96). На практике это требование может быть удовлетворено путем охвата влияния этих неопределенностей подходящими допущениями в критериях приемлемости. Смеси, содержание которых определено недостаточно ясно, часто производятся как побочные продукты производственных процессов, например, загрязненная рабочая одежда, перчатки или инструменты, остатки химических анализов и реакций, мусор, собранный при уборке полов, и прямые продукты обработки отходов. Важно определять комбинацию параметров, которая приводит к максимальному размножению нейтронов. Таким образом, оценка безопасности по критичности должна включать как определение неизвестных параметров, так и объяснение взаимосвязи параметров и их влияния на размножение нейтронов. Диапазон возможных величин (основанный на доступной информации и соответствующий природе вовлеченного материала) следует определять для каждого параметра, и для любой возможной комбинации параметров следует показывать, что коэффициент размножения нейтронов удовлетворяет критерию приемлемости. Этот принцип также следует применять для характеристик облучения при определении изотопного состава облученного ядерного топлива (п. 673.1 TS-G-1.1).

2.12.7.6-С1. В этом пункте рассмотрены требования к оценке критичности облученного ядерного топлива. Главной целью является обеспечение того, что содержание радионуклидов, использованное для оценок безопасности, дает консервативную оценку размножения нейтронов по сравнению с фактической загрузкой в упаковке. Облучение делящегося вещества обычно уменьшает содержание делящегося нуклида и производит актиниды, дающие вклад в образование и поглощение нейтронов, и продукты деления, дающие вклад в поглощение нейтронов. Длительное комбинированное влияние таких изменений на состав радионуклидов должно приводить к снижению реактивности по сравнению с необлученным состоянием. Однако конструкция реакторного топлива, включающая фиксированные выгорающие нейтронные поглотители, может испытывать увеличение реактивности в течение короткого срока облучения, если прирост реактивности из-за истощения нейтронных поглотителей больше, чем потеря реактивности за счет изменения композиции топлива. Если при оценке использован изотопный состав, который не соответствует условию большего или равного максимального нейтронного размножения в процессе облучения, то для предполагаемой композиции делящегося материала следует демонстрировать обеспечение консервативного значения размножения нейтронов для известных характеристик облученного ядерного топлива, загруженного в упаковку (п. 674.1 TS-G-1.1).

2.12.7.6-С2. Если при проведении оценки критичности не может быть продемонстрировано, что в течение периода возможного облучения было обеспечено максимальное размножение нейтронов, необходимы предперевозочные измерения для гарантии, что характеристики делящегося материала удовлетворяют критериям (например, общее облучение и остаточное тепло), принятым при оценке (см. п. 502.8 TS-G-1.1). Требование для измерений перед транспортированием соответствует требованию гарантировать присутствие фиксированных нейтронных поглотителей (см. п. 501.8 TS-G-1.1 или справку 2.12.3-С2 настоящего Руководства) или сменных нейтронных поглотителей (см. п. 502.4 TS-G-1.1 или 2.12.7.6-С4 настоящего Руководства), если это требуется в соответствии с сертификатом-разрешением об утверждении конструкции упаковки, который использован для контроля критичности. В случае облученного ядерного топлива обеднение делящихся нуклидов и выгорание актинидов, поглощающих нейтроны, и продуктов деления может обеспечивать контроль критичности, который должен быть подтвержден (п. 674.2 TS-G-1.1).

2.12.7.6-С3. Следует удостовериться, что облученное ядерное топливо находится в диапазоне условий, для которых при оценке безопасности по критичности продемонстрировано соответствие критериям пп. 2.12.1 - 2.12.12 НП-053-04 (пп. 671 - 682 Правил МАГАТЭ-96). Обычно первичными условиями, предлагаемыми для использования при оценке безопасности облученного ядерного топлива с известным обогащением, являются выгорание и характеристики распада, и если так, эти параметры должны быть проверены измерением. Методы измерения должны зависеть от вероятности ошибочной загрузки топлива и от величины запаса подкритичности из-за облучения. Например, с ростом числа топливных элементов с различным облучением, хранимых в бассейне выдержки реактора, и длительности интервала времени от выгрузки до перевозки возрастает вероятность ошибочной загрузки. Аналогично, если при оценке критичности использовалось облучение 10 ГВт x сут./МтU, но загрузка топлива в упаковки с облучением менее 40 ГВт x сут./МтU не разрешена сертификатом-разрешением на конструкцию, проверка облучения измерением с использованием метода, обладающего большой неопределенностью, может быть достаточной. Однако, если в оценках критичности использовалось облучение 35 ГВт x сут./МтU, то метод измерения для проверки облучения должен быть значительно более надежным. Критерии измерений, которые необходимо выполнять для получения разрешения на загрузку и перевозку топлива, следует ясно определять в сертификате-разрешении об утверждении. В публикациях [77 - 80] имеется информация об используемых [77] или предложенных для использования подходах к измерениям [78 - 80] (п. 502.8 TS-G-1.1).

2.12.7.6-С4. В сертификатах-разрешениях об утверждении для упаковок, содержащих делящийся материал, указывается разрешенное содержимое упаковки. Перед каждой перевозкой следует проверять, что делящееся содержимое имеет характеристики, представленные в перечне разрешенного содержимого. Если сменные поглотители нейтронов или другие сменные устройства, контролирующие характеристики критичности, специально разрешены сертификатом-разрешением, то проверками и (или) испытаниями (по обстоятельствам) следует убедиться в присутствии, правильном положении и (или) концентрации этих поглотителей нейтронов или устройств, управляющих реактивностью. Растворы поглотителей или растворимые в воде поглотители не соответствуют назначению, поскольку их непрерывное присутствие не может быть гарантировано. Процедурой подтверждения или испытаниями следует гарантировать, что наличие, правильное(ые) положение(я) и (или) концентрация(и) нейтронного поглотителя или контролирующих устройств в пределах упаковки соответствуют принятым в оценке безопасности по критичности. Только обеспечения количества контролирующего материала не всегда достаточно, поскольку его распределение в пределах упаковки может иметь значительное влияние на реактивность системы (п. 502.4 TS-G-1.1).

2.12.7.6-С5. Максимальное размножение нейтронов часто имеет место в необлученном состоянии. Однако один из методов, увеличивающих полезное время нахождения делящегося материала в реакторе, состоит в том, чтобы добавлять распределенные фиксированные выгорающие поглотители нейтронов, обеспечивающие большее начальное содержание делящихся нуклидов, чем в альтернативном случае. Такое реакторное топливо с выгорающими поглотителями может увеличивать реактивность в течение короткого периода облучения, когда прирост реактивности за счет выгорания фиксированных поглотителей нейтронов больше, чем уменьшение реактивности за счет изменения композиции топлива. Если проводится оценка критичности такого топлива, как необлученного или "неотравленного", то не требуется никаких предперевозочных измерений, поскольку при этом обеспечивается консервативная оценка максимального размножения нейтронов в процессе облучения. Поэтому требования 1-го абзаца п. 2.12.7.6 НП-053-04 (п. 674.a) Правил МАГАТЭ-96) применяются не к требованиям 2-го абзаца данного пункта НП-053-04 (п. 674.b) Правил МАГАТЭ-96). Кроме того, топливо реактора размножителя и топливо реактора накопителя может иметь коэффициент размножения нейтронов, который растет с увеличением времени облучения (п. 674.3 TS-G-1.1).

2.12.7.6-С6. При оценке коэффициента размножения нейтронов для облученного ядерного топлива необходимо рассматривать те же нормы по работоспособности, что и для необлученного ядерного топлива. Однако в ходе оценки для облученного ядерного топлива необходимо определять изотопный состав и распределение, соответствующие имеющейся информации от истории облучения. Состав радионуклидов конкретной топливной сборки в реакторе зависит в различной степени от начального избытка радионуклидов, удельной мощности и истории эксплуатации реактора (включая температуру замедлителя, растворенный бор и положение сборки в реакторе и т.п.), присутствия выгорающих поглотителей или управляющих стержней, времени выдержки после выгрузки. Редким, если не невозможным, является случай, когда все параметры облучения известны специалисту, проводящему оценки безопасности. Поэтому должны быть учтены требования п. 673 Правил МАГАТЭ-96 относительно неизвестных параметров. Обычно имеющаяся информация о характеристиках облученного ядерного топлива включает начальный состав топлива, среднее выгорание в сборке и время выдержки. Данные по истории эксплуатации, осевому распределению выгорания и присутствию выгорающих поглотителей обычно должны быть основаны на общих знаниях относительно характеристик реактора с рассматриваемым облученным топливом. Должно быть продемонстрировано, что состав и распределение радионуклидов, определенные с использованием известных и предполагаемых параметров облучения и времени распада, обеспечат консервативную оценку коэффициента размножения нейтронов после учета всех влияний и неопределенностей. Консерватизм можно продемонстрировать, игнорируя все или часть продуктов деления и (или) актинидов, поглощающих нейтроны, или предполагая более низкое выгорание, чем в реальности. Аксиальное распределение радионуклидов в топливной сборке очень важно, так как области с пониженным выгоранием на концах сборки могут вызвать увеличение реактивности по сравнению со сборкой, для которой предполагается среднее выгорание по всей высоте [81 - 83] (п. 674.4 TS-G-1.1).

2.12.7.6-С7. Следует использовать достоверные (прошедшие валидацию) расчетные методы для определения размножения нейтронов, предпочтительно в сравнении с подходящими измеренными данными (см. приложение VII TS-G-1.1 (Приложение V к настоящему Руководству). Для облученного ядерного топлива в такую валидацию следует включать сравнение с измеренными данными для радионуклидов. Результаты этой валидации следует учитывать при проведении анализа влияния неопределенностей и косвенного влияния, обычно связанных с расчетным размножением нейтронов. Ядерные сечения продуктов деления могут быть важны при анализе безопасности по критичности облученного ядерного топлива. Измерениям и оценке ядерного сечения продуктов деления в широком энергетическом диапазоне не придавалось значения в той степени, какую имеют ядерные сечения актинидов. Поэтому адекватность ядерных сечений продуктов деления, использованных в оценке, следует анализировать и обосновывать специалистам в области безопасности (п. 674.5 TS-G-1.1).