4. Содержание и технические средства аварийного радиационного контроля внешнего облучения

4.1. Система аварийного радиационного контроля (далее - АРК) внешнего облучения является составной частью системы радиационного контроля. Система АРК должна обеспечить получение информации о количественных и качественных показателях аварийного облучения различного характера, в том числе облучения в случае самопроизвольной цепной реакции (далее - СЦР). Система АРК является неотъемлемой частью системы обеспечения радиационной и ядерной безопасности персонала предприятия.

4.2. Задачей АРК внешнего облучения является обнаружение факта радиационной аварии и достоверная оценка индивидуальной дозы внешнего облучения участников аварии для оценки медицинских последствий аварийного облучения.

Основной функцией АРК является получение информации, необходимой для определения поглощенной дозы DT в тканях T.

Важным элементом системы аварийного реагирования является система аварийной сигнализации о самоподдерживающейся цепной реакции (САС СЦР), основной функцией которой в соответствии с требованиями ПБЯ-06-10-99 [1] является обнаружение СЦР на ЯОУ и выдача сигналов о необходимости эвакуации работников из ядерно-опасной зоны.

4.3. Система АРК внешнего облучения реализуется путем использования следующих видов технических средств:

- индивидуальные дозиметры фотонного и нейтронного излучения, дающие информацию об индивидуальном эквиваленте дозы Hp(10), которую можно использовать для оценки поглощенной дозы DT в тканях;

- индивидуальные дозиметры для хрусталика глаза, дающие информацию об индивидуальном эквиваленте дозы Hp(3) для бета-фотонного излучения. Поскольку такие дозиметры не являются широко доступными, может возникнуть необходимость использования величины Hp(10) для оценки дозы облучения хрусталика глаза в случаях аварийного облучения;

- индивидуальные дозиметры, располагаемые на конечностях, дающие информацию об индивидуальном эквиваленте дозы на кожу бета-фотонного излучения;

- автоматическая система радиационного контроля (далее - АСРК) или автоматизированные посты с дозиметрами, обеспечивающими измерение аварийных уровней мощности дозы гамма- и нейтронного излучения;

- размещаемые на рабочих местах персонала на ЯОУ переносные приборы, обеспечивающие измерение аварийных уровней дозы и/или мощности дозы гамма-, бета- и нейтронного излучения.

4.4. Требования к переносным приборам для измерения дозы (мощности дозы) гамма-, бета- и нейтронного излучения изложены в МУ 2.6.5.008-2016.

Обязательным требованием к стационарным и переносным дозиметрам, а также к индивидуальным электронным дозиметрам является наличие звуковой и световой сигнализации о превышении установленного порога мощности дозы и дозы фотонного и нейтронного излучения.

4.5. При аварийной ситуации измеряют значения индивидуального эквивалента дозы фотонного и нейтронного излучения Hp(10). Значения амбиентного эквивалента дозы фотонного и нейтронного излучения H*(10) определяют по показаниям блоков детектирования автоматической системы радиационного контроля, ближайших к участнику аварии. Также, если возможно, измеряют индивидуальные эквиваленты дозы Hp(3).

При необходимости восстановления дозы аварийного облучения при СЦР по различным органам и тканям дополнительно к инструментальным методам применяют расчетные методы.

4.6. Дозу аварийного облучения работника следует (если это возможно) фиксировать в документации (электронной базе) отдельно от дозы облучения, полученной при нормальной эксплуатации радиационного объекта.

4.7. Индивидуальный дозиметр для текущего контроля должен быть способен обеспечить информацию об индивидуальном эквиваленте дозы Hp(10) фотонного излучения с верхним пределом измерения не менее 10 Зв для того, чтобы он мог служить в качестве специального аварийного дозиметра.

4.8. При определении последствий аварийного облучения экспертами, привлекаемыми к расследованию аварии, могут быть использованы различные методы (гематологические, цитогенетические, генетические, физические), позволяющие восстановить условия аварийного облучения и оценить характеристики радиационного воздействия.

К физическим относятся методы, которые связаны с исследованием физических (а не биологических) эффектов, вызванных облучением, даже в том случае, если они происходят в биологических тканях, таких как волосы, ногти, эмаль зубов или костная ткань. Как правило, время от взятия пробы до получения оценочных характеристик дозы составляет от 1 до 48 часов, в зависимости от требуемой точности.