Подготовлена редакция документа с изменениями, не вступившими в силу

МЕТОД 1

Белок в растворе поглощает ультрафиолетовый свет при длине волны 280 нм благодаря присутствию в его структуре ароматических аминокислот, главным образом, тирозина и триптофана. Это свойство белков может быть использовано для их количественного определения. Если буферный раствор, используемый для растворения белка, имеет большее значение оптической плотности по отношению к воде, в нем присутствуют мешающие вещества. Влияние мешающих веществ может быть устранено использованием буферного раствора в качестве компенсационного раствора. Но, если мешающие вещества имеют высокую оптическую плотность, результаты могут быть подвергнуты сомнению. При низких концентрациях белок может адсорбироваться на стенках кюветы, что приводит к существенному заниженному результату его содержания в растворе. Во избежание этого готовят образцы с высокой концентрацией белка или используют при приготовлении неионные детергенты.

Испытуемый раствор. Готовят раствор испытуемого образца в буферном растворе, указанном в частной фармакопейной статье, с концентрацией белка от 0,2 мг/мл до 2 мг/мл.

Раствор сравнения. Готовят раствор соответствующего стандартного образца для определяемого белка в том же буферном растворе и с такой же концентрацией белка, что и в испытуемом растворе.

Методика. При проведении испытания испытуемый раствор, раствор сравнения и компенсационный раствор выдерживают при одинаковой температуре. Определяют оптические плотности (2.1.2.24) испытуемого раствора и раствора сравнения в кварцевых кюветах при длине волны 280 нм, используя указанный буферный раствор в качестве компенсационного раствора. Для получения точных результатов значения оптической плотности должны соответствовать требованиям линейности в интервале определяемых концентраций белка.

Светорассеяние. Точность определения белка может быть снижена за счет светорассеяния раствором испытуемого образца. Если белок в растворе присутствует в виде частиц, сопоставимых по размерам с длиной волны измеряемого света (от 250 нм до 300 нм), рассеяние светового потока приводит к значительному увеличению оптической плотности испытуемого образца. Чтобы рассчитать оптическую плотность при длине волны 280 нм с учетом светорассеяния, определяют оптическую плотность испытуемого раствора при длинах волн 320 нм, 325 нм, 330 нм, 335 нм, 340 нм, 345 нм и 350 нм. Строят график зависимости логарифма полученной оптической плотности от логарифма длины волны и, используя линейную регрессию, проводят калибровочную кривую, наилучшим образом совпадающую с нанесенными точками. Для определения логарифма оптической плотности при длине волны 280 нм экстраполируют полученную кривую. Антилогарифм данного значения является оптической плотностью, относящейся к светорассеянию. Для определения значения оптической плотности белка в растворе корректируют полученные значения, вычитая оптическую плотность, относящуюся к светорассеянию, из общей оптической плотности, измеренной при длине волны 280 нм. Для уменьшения влияния светорассеяния, особенно при заметной мутности раствора, его можно профильтровать через фильтр, не адсорбирующий белок, с размером пор 0,2 мкм или осветлить путем центрифугирования.

Расчеты. Для расчетов используют откорректированные значения оптической плотности. Рассчитывают концентрацию белка в испытуемом растворе (CU) по уравнению:

CU = CS (AU / AS),

где: CS - концентрация белка в растворе сравнения в миллиграммах на миллилитр;

AU - откорректированное значение оптической плотности испытуемого раствора;

AS - откорректированное значение оптической плотности раствора сравнения.