Внимание! Изменения, внесенные Решением Коллегии ЕЭК от 25.06.2024 N 75, в части дополнения общими фармакопейными статьями, вводятся в действие с 1 января 2025 года.

ОБЩИЕ ПРИНЦИПЫ

Капиллярный электрофорез представляет собой физический метод анализа, основанный на миграции внутри капилляра заряженных частиц определяемых веществ, растворенных в растворе электролита, под влиянием постоянного электрического поля.

Скорость миграции частиц определяемого вещества под влиянием электрического поля с напряженностью E определяется их электрофоретической подвижностью и электроосмотической подвижностью буферного раствора внутри капилляра. Электрофоретическая подвижность растворенного вещества 00000182.wmz зависит от его свойств (электрический заряд, размер и форма молекул) и от свойств буферного раствора, в котором происходит процесс миграции (тип и ионная сила электролита, значение pH, вязкость и наличие добавок). Электрофоретическая скорость растворенного вещества 00000183.wmz, частицы которого принимаются за сферические, описывается уравнением:

00000184.wmz,

где: q - эффективный заряд вещества;

r - Стоксовский радиус частиц вещества;

00000185.wmz - вязкость раствора электролита;

V - приложенное напряжение;

L - общая длина капилляра.

При помещении капилляра, заполненного буферным раствором, в электрическое поле внутри капилляра начинается перемещение растворителя, называемое электроосмотическим потоком. Скорость электроосмотического потока зависит от электроосмотической подвижности 00000186.wmz, которая, в свою очередь, зависит от плотности заряда на внутренней стенке капилляра и свойств буферного раствора. Электроосмотическая скорость 00000187.wmz описывается уравнением:

00000188.wmz,

где: 00000189.wmz - диэлектрическая постоянная буферного раствора;

00000190.wmz - дзета-потенциал поверхности капилляра.

Скорость вещества 00000191.wmz определяется как:

00000192.wmz.

В зависимости от заряда частиц вещества его электрофоретическая подвижность и электроосмотическая подвижность могут иметь одинаковое или противоположное направление. В условиях нормального капиллярного электрофореза анионы перемещаются в направлении, противоположном направлению электроосмотического потока, а их скорости меньше электроосмотической скорости. Катионы мигрируют в направлении, совпадающем с направлением электроосмотического потока, а их скорости превышают электроосмотическую скорость. В условиях, когда электроосмотическая скорость превышает электрофоретическую, катионы и анионы могут быть разделены в течение одного анализа.

Время (t), необходимое веществу для миграции на расстояние (l) от конца капилляра, в который вводится вещество, до точки детекции (эффективная длина капилляра), определяется уравнением:

00000193.wmz.

В общем, при значении pH более 3 капилляры с немодифицированной поверхностью, изготовленные из плавленого кварца, имеют отрицательный заряд, обусловленный ионизацией силанольных групп, расположенных на внутренней стенке капилляра. Соответственно, электроосмотический поток направлен от анода к катоду. Для достижения надлежащей воспроизводимости скорости миграции растворенных веществ от анализа к анализу, электроосмотический поток должен оставаться постоянным. В некоторых случаях требуется уменьшить или устранить электроосмотический поток путем модификации внутренней стенки капилляра или изменения концентрации, состава и/или pH буферного раствора.

После введения испытуемого образца в капилляр каждый ион определяемого вещества, входящего в состав пробы, мигрирует в среде фонового электролита согласно своей электрофоретической подвижности как независимая зона. Дисперсия зоны, представляющая собой уширение полосы каждого вещества, является следствием различных явлений. В идеальных условиях вклад в процесс уширения зоны вещества вносит только молекулярная диффузия вещества вдоль капилляра (продольная диффузия). В таком идеальном случае эффективность зоны, выражаемая числом теоретических тарелок (N), определяется как:

00000194.wmz,

где: D - коэффициент молекулярной диффузии вещества в буферном растворе.

На практике значительный вклад в дисперсию полосы вносят процессы тепловой конвекции, адсорбции образца на стенках капилляра, а также неодинаковая проводимость между образцом и буферным раствором, длина устройства для ввода пробы, размер ячейки детектора и расположение емкостей с буферными растворами на разных уровнях.

Разделение двух полос (выражаемое как разрешение, Rs) может быть достигнуто при изменении электрофоретической подвижности частиц определяемых веществ и электроосмотической подвижности, а также при увеличении эффективности полосы для каждого определяемого вещества, согласно уравнению:

00000195.wmz,

где: 00000196.wmz и 00000197.wmz - электрофоретические подвижности двух разделяемых веществ;

00000198.wmz - средняя электрофоретическая подвижность двух определяемых веществ 00000199.wmz.