1. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39(2 Suppl 1): S1 - 266
2. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl 2013; 3: 1 - 150
3. Tsai WC, Wu HY, Peng YS et al. Risk Factors for Development and Progression of Chronic Kidney Disease: A Systematic Review and Exploratory Meta-Analysis. Medicine (Baltimore) 2016; 95(11): e3013. doi: 10.1097/MD.0000000000003013
4. Shen Y, Cai R, Sun J et al. Diabetes mellitus as a risk factor for incident chronic kidney disease and end-stage renal disease in women compared with men: a systematic review and meta-analysis. Endocrine 2017; 55(1): 66 - 76. doi: 10.1007/s12020-016-1014-6
5. Chang AR, Grams ME, Ballew SH et al. Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium. BMJ 2019; 364: k5301. doi: 10.1136/bmj.k5301
6. Nitsch D, Grams M, Sang Y et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ 2013; 346: f324. doi: 10.1136/bmj.f324
7. See EJ, Jayasinghe K, Glassford N et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int 2019; 95(1): 160 - 172. doi: 10.1016/j.dsx.2018.08.036
8. Rashidbeygi E, Safabakhsh M, Delshad Aghdam S et al. Metabolic syndrome and its components are related to a higher risk for albuminuria and proteinuria: Evidence from a meta-analysis on 10,603,067 subjects from 57 studies. Diabetes Metab Syndr 2019; 13(1): 830 - 843. doi: 10.1016/j.dsx.2018.12.006
9. Xia J, Wang L, Ma Z et al. Cigarette smoking and chronic kidney disease in the general population: a systematic review and meta-analysis of prospective cohort studies. Nephrol Dial Transplant 2017; 32(3): 475 - 487. doi: 10.1093/ndt/gfw452
10. Garofalo C, Borrelli S, Pacilio M et al. Hypertension and Prehypertension and Prediction of Development of Decreased Estimated GFR in the General Population: A Meta-analysis of Cohort Studies. Am J Kidney Dis 2016; 67(1): 89 - 97. doi: 10.1053/j.ajkd.2015.08.027
11. Shang W, Li L, Ren Y et al. History of kidney stones and risk of chronic kidney disease: a meta-analysis. PeerJ 2017; 5: e2907. doi: 10.7717/peerj.2907
12. Musso G, Gambino R, Tabibian JH et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. JPLoS Med 2014; 11(7): e1001680. doi: 10.1371/joumal.pmed.1001680
13. Mantovani A, Zaza G, Byrne CD et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism 2018; 79: 64 - 76. doi: 10.1016/j.metabol.2017.11.003
14. Yu X, Yuan Z, Lu H et al. Relationship between birth weight and chronic kidney disease: evidence from systematics review and two-sample Mendelian randomization analysis. Hum Mol Genet 2020; 29(13): 2261 - 2274. doi: 10.1093/hmg/ddaa074
15. Major RW, Cheng MRI, Grant RA et al. Cardiovascular disease risk factors in chronic kidney disease: A systematic review and meta-analysis. PLoS One 2018; 13(3): e0192895. doi: 10.1371/joumal.pone.0192895
16. Xie X, Atkins E, Lv J et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet 2016; 387(10017): 435 - 43. doi: 10.1016/S0140-6736(15)00805-3
17. Zoungas S, Arima H, Gerstein HC et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol 2017; 5(6): 431 - 437. doi: 10.1016/S2213-8587(17)30104-3
18. Palmer SC, Navaneethan SD, Craig JC et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database SystRev 2014; (5): CD007784. doi: 10.1002/14651858.CD007784.pub2
19. Upadhyay A, Earley A, Lamont JL et al. Lipid-lowering therapy in persons with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med 2012; 157(4): 251 - 62. doi: 10.7326/0003-4819-157-4-201208210-00005
20. Coca SG, Ismail-Beigi F, Haq N et al. Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch Intern Med 2012; 172(10): 761 - 9. doi: 10.1001/archintemmed.2011.2230
21. Alizadeh S, Esmaeili H, Alizadeh M et al. Metabolic phenotypes of obese, overweight, and normal weight individuals and risk of chronic kidney disease: a systematic review and meta-analysis. Arch Endocrinol Metab 2019; 63(4): 427 - 437. doi: 10.20945/2359-3997000000149
22. Navaneethan SD, Yelmert H, Moustarah F et al. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol 2009; 4(10): 1565 - 74. doi: 10.2215/CJN.02250409
23. Schwasinger-Schmidt TE, Elhomsy G, Paull-Fomey BG. Impact of a Community-Based Weight Loss Program on Renal Function. Cureus 2020; 12(5): e8101. doi: 10.7759/cureus.8101
24. Thomas G, Sehgal AR, Kashyap SR et al. Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol 2011; 6(10): 2364 - 73. doi: 10.2215/CJN.02180311
25. Staplin N, Haynes R, Herrington WG et al. Smoking and Adverse Outcomes in Patients With CKD: The Study of Heart and Renal Protection (SHARP). Am J Kidney Dis 2016; 68(3): 371 - 80. doi: 10.1053/j.ajkd.2016.02.052
26. Bundy JD, Bazzano LA, Xie D, Cohan J et al. Self-Reported Tobacco, Alcohol, and Illicit Drug Use and Progression of Chronic Kidney Disease. Clin J Am Soc Nephrol 2018; 13(7): 993 - 1001. doi: 10.2215/CJN.11121017
27. United States Renal Date System Report. https://www.usrds.org/annual-data-report/
28. Смирнов А.В., Добронравов В.А., Каюков И.Г. Кардио-ренальный континуум: патогенетические основы превентивной нефрологии. Нефрология 2005; 9(3): 7 - 15
29. Astor BC, Matsushita K, Gansevoort RT et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int 2011; 79(12): 1331 - 40. doi: 10.1038/ki.2010.550
30. Fox CS, Matsushita K, Woodward M et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 2012; 380(9854): 1662 - 73. doi: 10.1016/S0140-6736(12)61350-6
31. Zhang W, He J, Zhang F et al. Prognostic role of C-reactive protein and interleukin-6 in dialysis patients: a systematic review and meta-analysis. J Nephrol 2013; 26(2): 243 - 53. doi: 10.5301/jn.5000169
32. Li WJ, Chen XM, Nie XY et al. Cardiac troponin and C-reactive protein for predicting all-cause and cardiovascular mortality in patients with chronic kidney disease: a meta-analysis. Clinics (Sao Paulo) 2015; 70(4): 301 - 11. doi: 10.6061/clinics/2015(04)14
33. Jing Z, Wei-jie Y, Nan Z et al. Hemoglobin targets for chronic kidney disease patients with anemia: a systematic review and meta-analysis. PLoS One 2012; 7(8): e43655. doi: 10.1371/joumal.pone.0043655
34. Heinz J, Kropf S, Luley C, Dierkes J. Homocysteine-lowering therapy does not lead to reduction in cardiovascular outcomes in chronic kidney disease patients: a meta-analysis of randomised, controlled trials. Br J Nutr 2012; 108(3): 400 - 7. doi: 10.1017/S0007114511007033
35. Coresh J, Heerspink HJL, Sang Y et al. Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes Endocrinol 2019; 7(2): 115 - 127. doi: 10.1016/S2213-8587(18)30313-9
36. Williams B, Mancia G, Spiering W et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J2018; 39(33): 3021 - 3104. doi: 10.1093/eurheartj/ehy339
37. Ponikowski P, Voors AA, Anker SD et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37(27): 2129 - 2200. doi: 10.1093/eurheartj/ehwl28
38. Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int Suppl 2012; 2: 337 - 414
39. Hill NR, Fatoba ST, Oke JL et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One 2016; 11(7): e0158765. doi: 10.1371/joumal.pone.0158765
40. Смирнов А.В., Каюков И.Г., Есаян А.М. и др. Превентивный подход в современной нефрологии. Нефрология 2004; 8(3): 7 - 14. doi: 10.24884/1561-6274-2004-8-3-7-14
41. Бикбов Б.Т., Томилина Н.А. Состояние заместительной терапии больных с хронической почечной недостаточностью в Российской Федерации в 1998 - 2007 гг (Аналитический отчет по данным Российского регистра заместительной почечной терапии). Нефрология и диализ 2009; 11(3): 144 - 233
42. Смирнов А.В., Седов В.М., Лхаахуу Од-Эрдэнэ и др. Снижение скорости клубочковой фильтрации как независимый фактор риска сердечно-сосудистой болезни. Нефрология 2006; 10(4): 7 - 17
43. Смирнов А.В., Добронравов В.А., Каюков И.Г. и др. Эпидемиология и социально-экономические аспекты хронической болезни почек. Нефрология 2006; 10(1): 7 - 13
44. Schieppati A, Remuzzi G. Chronic renal diseases as a public health problem: epidemiology, social, and economic implications. Kidney Int Suppl 2005; (98): S7 - S10. doi: 10.1111/j.1523-1755.2005.09801.x
45. Bommer J. Prevalence and socio-economic aspects of chronic kidney disease. Nephrol Dial Transplant 2002; 17 Suppl 11: 8 - 12. doi: 10.1093/ndt/17.suppl_11.8
46. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990 - 2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020; 395(10225): 709 - 733. doi: 10.1016/S0140-6736(20)30045-3
47. Yang CW, Harris DCH, Luyckx VA et al. Global case studies for chronic kidney disease/end-stage kidney disease care. Kidney Int Suppl 2020; 10(1): e24 - e48. doi: 10.1016/j.kisu.2019.11.010
48. Томилина Н.А., Андрусев А.М., Перегудова Н.Г., Шинкарев М.Б. Заместительная терапия терминальной хронической почечной недостаточности. Отчет по данным Общероссийского Регистра заместительной почечной терапии Российского диализного общества. Часть первая. Нефрология и диализ 2017; 19(4, приложение): 1 - 95
49. Смирнов А.В., Добронравов В.А., Бодур-Ооржак А.Ш. и др. Эпидемиология и факторы риска хронических болезней почек: региональный уровень общей проблемы. Тер арх 2005; 6: 20 - 27
50. Нефрология. Национальное руководство. Под ред. Н.А. Мухина. ГЭОТАР-Медиа, 2009, 720 с
51. National Center for Health Statistics. WHO Collaborating Centre for the WHO Family of International Classifications. https://www.who.int/classifications/icd/ICD-10%20Updates%202007.pdf
52. Gansevoort RT, Matsushita K, van der Velde M et al. Tower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 2011; 80(1): 93 - 104. doi: 10.1038/ki.2010.531
53. Heerspink HJL, Greene T, Tighiouart H et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol 2019; 7(2): 128 - 139. doi: 10.1016/S2213-8587(18)30314-0
54. Yarnoff BO, Hoerger TJ, Simpson SK et al. The cost-effectiveness of using chronic kidney disease risk scores to screen for early - stage chronic kidney disease. BMC Nephrol 2017; 18(1): 85. doi: 10.1186/s12882-017-0497-6
55. Galbraith LE, Ronksley PE, Bamieh LJ et al. The See Kidney Disease Targeted Screening Program for CKD. Clin J Am Soc Nephrol 2016; 11(6): 964 - 72. doi: 10.2215/CJN.11961115
56. Manns B, Hemmelgarn B, Tonelli M et al. Population based screening for chronic kidney disease: cost effectiveness study. BMJ 2010; 341: c5869. doi: 10.1136/bmj.c5869
57. Boulware LE, Jaar BG, Tarver-Carr ME et al. Screening for proteinuria in US adults: a cost-effectiveness analysis. JAMA 2003; 290(23): 3101 - 14. doi: 10.1001/jama.290.23.3101
58. Wu HY, Huang JW, Peng YS et al. Microalbuminuria screening for detecting chronic kidney disease in the general population: a systematic review. Ren Fail 2013; 35(5): 607 - 14. doi: 10.3109/0886022X.2013.779907
59. Komenda P, Ferguson TW, Macdonald K et al. Cost-effectiveness of primary screening for CKD: a systematic review. Am J Kidney Dis 2014; 63(5): 789 - 97. doi: 10.1053/j.ajkd.2013.12.012
60. Gheewala PA, Zaidi STR, Jose MD et al. Effectiveness of targeted screening for chronic kidney disease in the community setting: a systematic review. J Nephrol 2018; 31(1): 27 - 36. doi: 10.1007/s40620-017-0375-0
61. Yang P, Zou H, Xiao B, Xu G. Comparative Efficacy and Safety of Therapies in IgA Nephropathy: A Network Meta-analysis of Randomized Controlled Trials. Kidney Int Rep 2018; 3(4): 794 - 803. doi: 10.1016/j.ekir.2018.03.006
62. Sridharan K, Sivaramakrishnan G. Drug Therapies for Patients with IgA Nephropathy: A Network Meta-analysis of Randomized Clinical Trials. Curr Clin Pharmacol 2020; 5(2): 132 - 144. doi: 10.2174/1574884715666191223103914
63. Zhang Z, Yang Y, Jiang SM, Li WG. Efficacy and safety of immunosuppressive treatment in IgA nephropathy: a meta-analysis of randomized controlled trials. BMC Nephrol 2019; 20(1): 333. doi: 10.1186/s12882-019-1519-3
64. Zheng Q, Yang H, Liu W et al. Comparative efficacy of 13 immunosuppressive agents for idiopathic membranous nephropathy in adults with nephrotic syndrome: a systematic review and network meta-analysis. BMJ Open 2019; 9(9): e030919. doi: 10.1136/bmjopen-2019-030919
65. Chen Y, Schieppati A, Cai G et al. Immunosuppression for membranous nephropathy: a systematic review and meta-analysis of 36 clinical trials. Clin J Am Soc Nephrol 2013; 8(5): 787 - 96. doi: 10.2215/CJN.07570712
66. Laurin LP, Nachman PH, Foster BJ. Calcineurin Inhibitors in the Treatment of Primary Focal Segmental Glomerulosclerosis: A Systematic Review and Meta-analysis of the Literature. Can J Kidney Health Dis 2017; 4: 2054358117692559. doi: 10.1177/2054358117692559
67. Palmer SC, Tunnicliffe DJ, Singh-Grewal D et al. Induction and Maintenance Immunosuppression Treatment of Proliferative Lupus Nephritis: A Network Meta-analysis of Randomized Trials. Am J Kidney Dis 2017; 70(3): 324 - 336. doi: 10.1053/j.ajkd.2016.12.008
68. Li Y, Xu S, Xu G. Comparison of Different Uses of Cyclophosphamide in Lupus Nephritis: A Meta-Analysis of Randomized Controlled Trials. Endocr Metab Immune Disord Drug Targets 2020; 20(5): 687 - 702. doi: 10.2174/1871530319666191107110420
69. Hazlewood GS, Metzler C, Tomlinson GA et al. Non-biologic remission maintenance therapy in adult patients with ANCA-associated vasculitis: a systematic review and network meta-analysis. Joint Bone Spine 2014; 81(4): 337 - 41. doi: 10.1016/j.jbspin.2013.11.006
70. Fabrizi F, Ganeshan SV, Lunghi G et al. Antiviral therapy of hepatitis C in chronic kidney diseases: meta-analysis of controlled clinical trials. J Viral Hepat 2008; 15(8): 600 - 6. doi: 10.1111/j.1365-2893.2008.00990.x
71. Myint TM, Rangan GK, Webster AC. Treatments to slow progression of autosomal dominant polycystic kidney disease: systematic review and meta-analysis of randomized trials. Nephrology (Carlton) 2014; 19(4): 217 - 26. doi: 10.1111/nep.12211
72. Lv J, Ehteshami P, Sarnak MJ et al. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. CMAJ 2013; 185(11): 949 - 57. doi: 10.1503/cmaj.121468
73. Нефрология. Клинические рекомендации. По ред. Шилов Е.М., Смирнов А.В., Козловская Н.Л. ГОЭТАР-Медиа, 202
74. Malhotra R, Nguyen NA, Benavente O et al. Association Between More Intensive vs Less Intensive Blood Pressure Lowering and Risk of Mortality in Chronic Kidney Disease Stages 3 to 5: A Systematic Review and Meta-analysis. JAMA Intern Med 2017; 177(10): 1498 - 1505. doi: 10.1001/jamaintemmed.2017.4377
75. Zhang X, Xiang C, Zhou YH et al. Effect of statins on cardiovascular events in patients with mild to moderate chronic kidney disease: a systematic review and meta-analysis of randomized clinical trials. BMC Cardiovasc Disord 2014; 14: 19. doi: 10.1186/1471-2261-14-19
76. Major RW, Cheung CK, Gray LJ, Brunskill NJ. Statins and Cardiovascular Primary Prevention in CKD: A Meta-Analysis. Clin J Am Soc Nephrol 2015; 10(5): 732 - 9. doi: 10.2215/CJN.07460714
77. Ladhani M, Craig JC, Irving M et al. Obesity and the risk of cardiovascular and all-cause mortality in chronic kidney disease: a systematic review and meta-analysis. Nephrol Dial Transplant 2017; 32(3): 439 - 449. doi: 10.1093/ndt/gfw075
78. Collins AJ, Pitt B, Reaven N et al. Association of Serum Potassium with All-Cause Mortality in Patients with and without Heart Failure, Chronic Kidney Disease, and/or Diabetes. Am J Nephrol 2017; 46(3): 213 - 221. doi: 10.1159/000479802
79. Hu MK, Witham MD, Soiza RL. Oral Bicarbonate Therapy in Non-Haemodialysis Dependent Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. J Clin Med 2019; 8(2): 208. doi: 10.3390/jcm8020208
80. Duranton F, Rodriguez-Ortiz ME, Duny Y et al. Vitamin D treatment and mortality in chronic kidney disease: a systematic review and meta-analysis. Am J Nephrol 2013; 37(3): 239 - 48. doi: 10.1159/000346846
81. Li XH, Feng L, Yang ZH, Liao YH. Effect of active vitamin D on cardiovascular outcomes in predialysis chronic kidney diseases: A systematic review and meta-analysis. Nephrology (Carlton) 2015; 20(10): 706 - 714. doi: 10.1111/nep.12505
82. Xu L, Wan X, Huang Z et al. Impact of vitamin D on chronic kidney diseases in non-dialysis patients: a meta-analysis of randomized controlled trials. PLoS One 2013; 8(4): e61387. doi: 10.1371/journal.pone.0061387
83. Liu X, Zhai T, Ma R et al. Effects of uric acid-lowering therapy on the progression of chronic kidney disease: a systematic review and meta-analysis. Ren Fail 2018; 40(1): 289 - 297. doi: 10.1080/0886022X.2018.1456463
84. Zhang YF, He F, Ding HH et al. Effect of uric-acid-lowering therapy on progression of chronic kidney disease: a meta-analysis. J Huazhong Univ Sci Technolog Med Sci 2014; 34(4): 476 - 481. doi: 10.1007/s11596-014-1302-4
85. Lu R, Zhang Y, Zhu X et al. Effects of mineralocorticoid receptor antagonists on left, ventricular mass in chronic kidney disease patients: a systematic review and meta-analysis. Int Urol Nephrol 2016; 48(9): 1499 - 509. doi: 10.1007/s11255-016-1319-7
86. Wang XR, Zhang JJ, Xu XX, Wu YG. Prevalence of coronary artery calcification and its association with mortality, cardiovascular events in patients with chronic kidney disease: a systematic review and meta-analysis. Ren Fail 2019; 41(1): 244 - 256. doi: 10.1080/0886022X.2019.1595646
87. Bansal N, Katz R, Robinson-Cohen C et al. Absolute Rates of Heart Failure, Coronary Heart Disease, and Stroke in Chronic Kidney Disease: An Analysis of 3 Community-Based Cohort Studies. JAMA Cardiol 2017; 2(3): 314 - 318. doi: 10.1001/jamacardio.2016.4652
88. Charytan DM, Wallentin L, Lagerqvist B et al. Early angiography in patients with chronic kidney disease: a collaborative systematic review. Clin J Am Soc Nephrol 2009; 4(6): 1032 - 43. doi: 10.2215/CJN.05551008
89. Collier G, Greenan MC, Brady JJ et al. A study of the relationship between albuminuria, proteinuria and urinary reagent strips. Ann Clin Biochem 2009; 46 (Pt3): 247 - 9. doi: 10.1258/acb.2009.008189
90. McTaggart MP, Newall RG, Hirst JA et al. Diagnostic accuracy of point-of-care tests for detecting albuminuria: a systematic review and meta-analysis. Ann Intern Med 2014; 160(8): 550 - 7. doi: 10.7326/M13-2331
91. Kim Y, Park S, Kim MH et al. Can a semi-quantitative method replace the current quantitative method for the annual screening of microalbuminuria in patients with diabetes? Diagnostic accuracy and cost-saving analysis considering the potential health burden. PLoS One 2020; 15(1): e0227694. doi: 10.1371/journal.pone.0227694
92. White SL, Yu R, Craig JC et al. Diagnostic accuracy of urine dipsticks for detection of albuminuria in the general community. Am J Kidney Dis 2011; 58(1): 19 - 28. doi: 10.1053/j.ajkd.2010.12.026
93. Park JI, Baek H, Kim BR, Jung HH. Comparison of urine dipstick and albumin: creatinine ratio for chronic kidney disease screening: A population-based study. PLoS One 2017; 12(2): e0171106. doi: 10.1371/journal.pone.0171106
94. Koeda Y, Tanaka F, Segawa T et al. Comparison between urine albumin-to-creatinine ratio and urine protein dipstick testing for prevalence and ability to predict the risk for chronic kidney disease in the general population (Iwate-KENCO study): a prospective community-based cohort study. BMC Nephrol 2016; 17(1): 46. doi: 10.1186/s12882-016-0261-3
95. Usui T, Yoshida Y, Nishi H et al. Diagnostic accuracy of urine dipstick for proteinuria category in Japanese workers. Clin Exp Nephrol 2020; 24(2): 151 - 156. doi: 10.1007/s10157-019-01809-3
96. Naruse M, Mukoyama M, Morinaga J et al. Usefulness of the quantitative measurement of urine protein at a community-based health checkup: a cross-sectional study. Clin Exp Nephrol 2020; 24(1): 45 - 52. doi: 10.1007/s10157-019-01789-4
97. Wu HY, Peng YS, Chiang CK et al. Diagnostic performance of random urine samples using albumin concentration vs ratio of albumin to creatinine for microalbuminuria screening in patients with diabetes mellitus: a systematic review and meta-analysis. JAMA Intern Med 2014; 174(7): 1108 - 15. doi: 10.1001/jamainternmed.2014.1363
98. Wu MT, Lam KK, Lee WC et al. Albuminuria, proteinuria, and urinary albumin to protein ratio in chronic kidney disease. J Clin Lab Anal 2012; 26(2): 82 - 92. doi: 10.1002/jcla.21487
99. Kim SM, Lee CH, Lee JP et al. The association between albumin to creatinine ratio and total protein to creatinine ratio in patients with chronic kidney disease. Clin Nephrol 2012; 78(5): 346 - 52. doi: 10.5414/CN107507
100. Atkins RC, Briganti EM, Zimmet PZ, Chadban SJ. Association between albuminuria and proteinuria in the general population: the AusDiab Study. Nephrol Dial Transplant 2003; 18(10): 2170 - 4. doi: 10.1093/ndt/gfg314
101. Fisher H, Hsu CY, Vittinghoff E et al. Comparison of associations of urine protein-creatinine ratio versus albumin-creatinine ratio with complications of CKD: a cross-sectional analysis. Am J Kidney Dis 2013; 62(6): 1102 - 8. doi: 10.1053/j.ajkd.2013.07.013
102. Methven S, MacGregor MS, Traynor JP et al. Comparison of urinary albumin and urinary total protein as predictors of patient outcomes in CKD. Am J Kidney Dis 2011; 57(1): 21 - 8. doi: 10.1053/j.ajkd.2010.08.009
103. Weaver RG, James MT, Ravani P et al. Estimating Urine Albumin-to-Creatinine Ratio from Protein-to-Creatinine Ratio: Development of Equations using Same-Day Measurements. J Am Soc Nephrol 2020; 31(3): 591 - 601. doi: 10.1681/ASN.2019060605
104. McFadden EC, Hirst JA, Verbakel JY et al. Systematic Review and Meta-analysis Comparing the Bias and Accuracy of the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration Equations in Community-Based Populations. Clin Chem 2018; 64(3): 475 - 485. doi: 10.1373/clinchem.2017.276683
105. Levey AS, Stevens LA, Schmid CH et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150(9): 604 - 12. doi: 10.7326/0003-4819-150-9-200905050-00006
106. Stevens LA, Schmid CH, Greene T et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am J Kidney Dis 2010; 56(3): 486 - 95. doi: 10.1053/j.ajkd.2010.03.026
107. Matsushita K, Mahmoodi BK, Woodward M et al. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 2012; 307(18): 1941 - 51. doi: 10.1001/jama.2012.3954
108. Levey AS, Stevens LA. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am J Kidney Dis 2010; 55(4): 622 - 7. doi: 10.1053/j.ajkd.2010.02.337
109. Zhang M, Cao X, Cai G et al. Clinical evaluation of serum cystatin C and creatinine in patients with chronic kidney disease: a meta-analysis. J Int Med Res 2013; 41(4): 944 - 55. doi: 10.1177/0300060513480922
110. Qiu X, Liu C, Ye Y et al. The diagnostic value of serum creatinine and cystatin c in evaluating glomerular filtration rate in patients with chronic kidney disease: a systematic literature review and meta-analysis. Oncotarget 2017; 8(42): 72985 - 72999. doi: 10.18632/oncotarget.20271
111. Wei L, Ye X, Pei X et al. Diagnostic accuracy of serum cystatin C in chronic kidney disease: a meta-analysis. Clin Nephrol 2015; 84(2): 86 - 94. doi: 10.5414/cn108525
112. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 2002; 40(2): 221 - 6. doi: 10.1053/ajkd.2002.34487
113. Inker LA, Schmid CH, Tighiouart H et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012; 367(1): 20 - 9. doi: 10.1056/NEJMoa1114248
114. Miller WG, Myers GL, Ashwood ER et al. Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med 2005; 129(3): 297 - 304. doi: 10.1043/1543-2165(2005)129<297:CMSOTA>2.0.CO;2
115. L, Delanaye P, Boutten A et al. A multicentric evaluation of IDMS-traceable creatinine enzymatic assays. Clin Chim Acta 2011; 412(23 - 24): 2070 - 5. doi: 10.1016/j.cca.2011.07.012
116. Lee ES, Collier CP, White CA. Creatinine Assay Attainment of Analytical Performance Goals Following Implementation of IDMS Standardization: Further Improvements Required. Can J Kidney Health Dis 2017; 4: 2054358117693353. doi: 10.1177/2054358117693353
117. Stevens LA, Manzi J, Levey AS et al. Impact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am J Kidney Dis 2007; 50(1): 21 - 35. doi: 10.1053/j.ajkd.2007.04.004
118. Ou M, Song Y, Li S et al. LC-MS/MS Method for Serum Creatinine: Comparison with Enzymatic Method and Jaffe Method. PLoS One 2015; 10(7): e0133912. doi: 10.1371/joumal.pone.0133912
119. Jones GRD. Creatinine assays - global progress on implementing IDMS traceability. Clin Chem Lab Med 2015; 53 (Special) Supp1: S1 - 1450
120. Welch MJ, Cohen A, Hertz HS et al. Determination of serum creatinine by isotope dilution mass spectrometry as a candidate definitive method. Anal Chem 1986; 58(8): 1681 - 5. doi: 10.1021/ac00121a018
121. Lawson N, Lang T, Broughton A et al. Creatinine assays: time for action? Ann Clin Biochem 2002; 39 (Pt 6): 599 - 602. doi: 10.1177/000456320203900609
122. Lamb EJ, Wood J, Stowe HJ et al. Susceptibility of glomerular filtration rate estimations to variations in creatinine methodology: a study in older patients. Ann Clin Biochem 2005; 42 (Pt 1): 11 - 8. doi: 10.1258/0004563053026899
123. Kuster N, Cristol JP, Cavalier E et al. Enzymatic creatinine assays allow estimation of glomerular filtration rate in stages 1 and 2 chronic kidney disease using CKD-EPI equation. Clin Chim Acta 2014; 428: 89 - 95. doi: 10.1016/j.cca.2013.11.002
124. Soveri I, Berg UB, Bjork J et al. Measuring GFR: a systematic review. Am J Kidney Dis 2014; 64(3): 411 - 24. doi: 10.1053/j.ajkd.2014.04.010
125. Palmer SC, Gardner S, Tonelli M et al. Phosphate-Binding Agents in Adults With CKD: A Network Meta-analysis of Randomized Trials. Am J Kidney Dis 2016; 68(5): 691 - 702. doi: 10.1053/j.ajkd.2016.05.015
126. Matsushita K, Coresh J, Sang Y et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol 2015; 3(7): 514 - 25. doi: 10.1016/S2213-8587(15)00040-6
127. F, Chimeno MM, D et al. Cholesterol-Lowering Treatment in Chronic Kidney Disease: Multistage Pairwise and Network Meta-Analyses. Sci Rep 2019 Jun 20; 9(1): 8951. doi: 10.1038/s41598-019-45431-5
128. Fishbane S, Spinowitz B. Update on Anemia in ESRD and Earlier Stages of CKD: Core Curriculum 2018. Am J Kidney Dis 2018; 71(3): 423 - 435. doi: 10.1053/j.ajkd.2017.09.026
129. Locatelli F, P, Covic A et al. Kidney Disease: Improving Global Outcomes guidelines on anaemia management in chronic kidney disease: a European Renal Best Practice position statement. Nephrol Dial Transplant 2013; 28(6): 1346 - 59. doi: 10.1093/ndt/gft033
130. J, J. Differential diagnosis of anemia. Vnitr Lek 2018; 64(5): 468 - 475
131. Archer NM, Brugnara C. Diagnosis of iron-deficient states. Crit Rev Clin Lab Sci 2015; 52(5): 256 - 72. doi: 10.3109/10408363.2015.1038744
132. McCullough K, Bolisetty S. Ferritins in Kidney Disease. Semin Nephrol 2020; 40(2): 160 - 172. doi: 10.1016/j.semnephrol.2020.01.007
133. Natoli JL, Boer R, Nathanson BH et al. Is there an association between elevated or low serum levels of phosphorus, parathyroid hormone, and calcium and mortality in patients with end stage renal disease? A meta-analysis. BMC Nephrol 2013; 14: 88. doi: 10.1186/1471-2369-14-88
134. Pilz S, Iodice S, Zittermann A et al. Vitamin D status and mortality risk in CKD: a meta-analysis of prospective studies. Am J Kidney Dis 2011; 58(3): 374 - 82. doi: 10.1053/j.ajkd.2011.03.020
135. Zhang Y, Darssan D, Pascoe EM et al. Vitamin D status and mortality risk among patients on dialysis: a systematic review and meta-analysis of observational studies. Nephrol Dial Transplant 2018; 33(10): 1742 - 1751. doi: 10.1093/ndt/gfy016
136. Fan Y, Jin X, Jiang M, Fang N. Elevated serum alkaline phosphatase and cardiovascular or all-cause mortality risk in dialysis patients: A meta-analysis. Sci Rep 2017; 7(1): 13224. doi: 10.1038/s41598-017-13387-z
137. McMahon EJ, Campbell KL, Bauer JD, Mudge DW. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst Rev 2015; (2): CD010070. doi: 10.1002/14651858.CD010070.pub2
138. Garofalo C, Borrelli S, Provenzano M et al. Dietary Salt Restriction in Chronic Kidney Disease: A Meta-Analysis of Randomized Clinical Trials. Nutrients 2018; 10(6): 732. doi: 10.3390/nu10060732
139. Navaneethan SD, Shao J, Buysse J, Bushinsky DA. Effects of Treatment of Metabolic Acidosis in CKD: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol 2019; 14(7): 1011 - 1020. doi: 10.2215/CJN.13091118
140. Susantitaphong P, Sewaralthahab K, Balk EM et al. Short- and long-term effects of alkali therapy in chronic kidney disease: a systematic review. Am J Nephrol 2012; 35(6): 540 - 7. doi: 10.1159/000339329
141. Su X, Xu B, Yan B et al. Effects of uric acid-lowering therapy in patients with chronic kidney disease: A meta-analysis. PLoS One 2017; 12(11): e0187550. doi: 10.1371/journal.pone.0187550
142. Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease. Kidney Int Suppl 2012; 2: 279 - 335
143. Kidney Disease: Improving Global Outcomes (KDIGO) Lipid Work Group. KDIGO Clinical Practice Guideline for Lipid Management in Chronic Kidney Disease. Kidney Int Suppl 2013; 3: 259 - 305
144. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2017; 7(3): e1. doi: 10.1016/j.kisu.2017.10.001
145. Moghazi S, Jones E, Schroepple J et al. Correlation of renal histopathology with sonographic findings. Kidney Int 2005; 67(4): 1515 - 1520. doi: 10.1111/j.1523-1755.2005.00230.x
146. Page JE, Morgan SH, Eastwood JB et al. Ultrasound findings in renal parenchymal disease: comparison with histological appearances. Clin Radiol 1994; 49(12): 867 - 70. doi: 10.1016/s0009-9260(05)82877-6
147. Vasbinder GB, Nelemans PJ, Kessels AG et al. Diagnostic tests for renal artery stenosis in patients suspected of having renovascular hypertension: a meta-analysis. Ann Intern Med 2001 Sep; 135(6): 401 - 11. doi: 10.7326/0003-4819-135-6-20010918000009
148. Williams GJ, Macaskill P, Chan SF et al. Comparative accuracy of renal duplex sonographic parameters in the diagnosis of renal artery stenosis: paired and unpaired analysis. AJR Am J Roentgenol 2007; 188(3): 798 - 811. doi: 10.2214/AJR.06.0355
149. Tan KT, van Beek EJ, Brown PW et al. Magnetic resonance angiography for the diagnosis of renal artery stenosis: a meta-analysis. Clin Radiol 2002; 57(7): 617 - 24. doi: 10.1053/crad.2002.0941
150. James MT, Grams ME, Woodward M et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Diabetes Mellitus, and Hypertension With Acute Kidney Injury. Am J Kidney Dis 2015 Oct; 66(4): 602 - 12. doi: 10.1053/j.ajkd.2015.02.338
151. McCullough PA, Bertrand ME, Brinker JA, Stacul F. A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media. J Am Coll Cardiol 2006; 48(4): 692 - 9. doi: 10.1016/j.jacc.2006.02.073
152. Han XF, Zhang XX, Liu KM et al. Contrast-induced nephropathy in patients with diabetes mellitus between iso-and low-osmolar contrast media: A meta-analysis of full-text prospective, randomized controlled trials. PLoS One 2018; 13(3): e0194330. doi: 10.1371/journal.pone.0194330
153. From AM, Al Badarin FJ, McDonald FS et al. Iodixanol versus low-osmolar contrast media for prevention of contrast induced nephropathy: meta-analysis of randomized, controlled trials. Circ Cardiovasc Interv 2010; 3(4): 351 - 8. doi: 10.1161/CIRCINTERVENTIONS.109.917070
154. Zhang J, Jiang Y, Rui Q et al. Iodixanol versus iopromide in patients with renal insufficiency undergoing coronary angiography with or without PCI. Medicine (Baltimore) 2018; 97(18): e0617. doi: 10.1097/MD.0000000000010617
155. Khan SU, Khan MU, Rahman H et al. A Bayesian network meta-analysis of preventive strategies for contrast-induced nephropathy after cardiac catheterization. Cardiovasc Revasc Med 2019; 20(1): 29 - 37. doi: 10.1016/j.carrev.2018.06.005
156. Giacoppo D, Gargiulo G, Buccheri S et al. Preventive Strategies for Contrast-Induced Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Procedures: Evidence From a Hierarchical Bayesian Network Meta-Analysis of 124 Trials and 28 240 Patients. Circ Cardiovasc Interv 2017; 10(5): e004383. doi: 10.1161/CIRCINTERVENTIONS.116.004383
157. Su X, Xie X, Liu L et al. Comparative Effectiveness of 12 Treatment Strategies for Preventing Contrast-Induced Acute Kidney Injury: A Systematic Review and Bayesian Network Meta-analysis. Am J Kidney Dis 2017; 69 (1): 69 - 77. doi: 10.1053/j.ajkd.2016.07.033
158. Ma WQ, Zhao Y, Wang Y et al. Comparative efficacy of pharmacological interventions for contrast-induced nephropathy prevention after coronary angiography: a network meta-analysis from randomized trials. Int Urol Nephrol 2018; 50(6): 1085 - 1095. doi: 10.1007/s11255-018-1814-0
159. Zhou X, Dai J, Xu X et al. Comparative Efficacy of Statins for Prevention of Contrast-Induced Acute Kidney Injury in Patients With Chronic Kidney Disease: A Network Meta-Analysis. Angiology 2019; 70(4): 305 - 316. doi: 10.1177/0003319718801246
160. Navarese EP, Gurbel PA, Andreotti F et al. Prevention of contrast-induced acute kidney injury in patients undergoing cardiovascular procedures - a systematic review and network meta-analysis. PLoS One 2017; 12(2): e0168726. doi: 10.1371/joumal.pone.0168726
161. Jiang Y, Chen M, Zhang Y et al. Meta-analysis of prophylactic hydration versus no hydration on contrast-induced acute kidney injury. Coron Artery Dis 2017; 28(8): 649 - 657. doi: 10.1097/MCA.0000000000000514
162. Woolen SA, Shankar PR, Gagnier JJ et al. Risk of Nephrogenic Systemic Fibrosis in Patients With Stage 4 or 5 Chronic Kidney Disease Receiving a Group II Gadolinium-Based Contrast Agent: A Systematic Review and Meta-analysis. JAMA Intern Med 2020; 180(2): 223 - 230. doi: 10.1001/jamainternmed.2019.5284
163. Agarwal R, Brunelli SM, Williams K et al. Gadolinium-based contrast agents and nephrogenic systemic fibrosis: a systematic review and meta-analysis. Nephrol Dial Transplant 2009; 24(3): 856 - 63. doi: 10.1093/ndt/gfii593
164. Soulez G, Bloomgarden DC, Rofsky NM et al. Prospective Cohort Study of Nephrogenic Systemic Fibrosis in Patients With Stage 3 - 5 Chronic Kidney Disease Undergoing MRI With Injected Gadobenate Dimeglumine or Gadoteridol. AJR Am J Roentgenol 2015; 205(3): 469 - 78. doi: 10.2214/AJR.14.14268
165. Attari H, Cao Y, Elmholdt TR et al. A Systematic Review of 639 Patients with Biopsy-confirmed Nephrogenic Systemic Fibrosis. Radiology 2019; 292(2): 376 - 386. doi: 10.1148/radiol.2019182916
166. Bangash F, Agarwal R. Masked hypertension and white-coat hypertension in chronic kidney disease: a meta-analysis. Clin J Am Soc Nephrol 2009; 4(3): 656 - 64. doi: 10.2215/CJN.05391008
167. A, Ayala DE, L et al. Comparison of ambulatory blood pressure parameters of hypertensive patients with and without chronic kidney disease. Chronobiol Int 2013; 30(1 - 2): 145 - 58. doi: 10.3109/07420528.2012.703083
168. Gorostidi M, Sarafidis PA, de la Sierra A et al. Differences between office and 24-hour blood pressure control in hypertensive patients with CKD: A 5,693-patient cross-sectional analysis from Spain. Am J Kidney Dis 2013; 62(2): 285 - 94. doi: 10.1053/j.ajkd.2013.03.025
169. Son HE, Ryu JY, Go S et al. Association of ambulatory blood pressure monitoring with renal outcome in patients with chronic kidney disease. Kidney Res Clin Pract 2020; 39(1): 70 - 80. doi: 10.23876/j.krcp.l9.103
170. Gabbai FB, Rahman M, Hu B et al. Relationship between ambulatory BP and clinical outcomes in patients with hypertensive CKD. Clin J Am Soc Nephrol 2012; 7(11): 1770 - 6. doi: 10.2215/CJN.11301111
171. Minutolo R, Gabbai FB, Chiodini P et al. Reassessment of Ambulatory Blood Pressure Improves Renal Risk Stratification in Nondialysis Chronic Kidney Disease: Long-Term Cohort Study. Hypertension 2015; 66(3): 557 - 62. doi: 10.1161/HYPERTENSIONAHA.115.05820
172. Артериальная гипертензия у взрослых. Клинические рекомендации. https://scardio.ru/content/Guidelines/Clinic_rek_AG_2020.pdf
173. Grunwald JE, Pistilli M, Ying GS et al. Retinopathy and the risk of cardiovascular disease in patients with chronic kidney disease (from the Chronic Renal Insufficiency Cohort study). Am J Cardiol 2015; 116(10): 1527 - 33. doi: 10.1016/j.amjcard.2015.08.015
174. Kim Y, Clio JS, Clio WK et al. Retinopathy and left ventricular hypertrophy in patients with chronic kidney disease: Interrelationship and impact on clinical outcomes. Int J Cardiol 2017; 249: 372 - 376. doi: 10.1016/j.ijcard.2017.06.123
175. Hwang HS, Kim SY, Hong YA et al. Clinical impact of coexisting retinopathy and vascular calcification on chronic kidney disease progression and cardiovascular events. Nutr Metab Cardiovasc Dis 2016; 26(7): 590 - 596. doi: 10.1016/j.numecd.2016.02.005
176. Zhang A, Wang S, Li H et al. Aortic arch calcification and risk of cardiovascular or all-cause and mortality in dialysis patients: A meta-analysis. Sci Rep 2016; 6: 35375. doi: 10.1038/srep35375
177. Niu Q, Hong Y, Lee CH et al. Abdominal aortic calcification can predict all-cause mortality and CV events in dialysis patients: A systematic review and meta-analysis. PLoS One 2018; 13(9): e0204526. doi: 10.1371/joumal.pone.0204526
178. Rennenberg RJ, Kessels AG, Schurgers LJ et al. Vascular calcifications as a marker of increased cardiovascular risk: a meta-analysis. Vasc Health Risk Manag 2009; 5(1): 185 - 97. doi: 10.2147/vhrm.s4822
179. Wang Z, Jiang A, Wei F, Chen H. Cardiac valve calcification and risk of cardiovascular or all-cause mortality in dialysis patients: a meta-analysis. BMC Cardiovasc Disord 2018; 18(1): 12. doi: 10.1186/s12872-018-0747-y
180. Samad Z, Sivak JA, Phelan M et al. Prevalence and Outcomes of Left-Sided Valvular Heart Disease Associated With Chronic Kidney Disease. J Am Heart Assoc 2017; 6(10): e006044. doi: 10.1161/JAHA.117.006044
181. Marwick TH, Amann K, Bangalore S et al. Chronic kidney disease and valvular heart disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2019; 96(4): 836 - 849. doi: 10.1016/j.kint.2019.06.025
182. Payne J, Sharma S, De Leon D et al. Association of echocardiographic abnormalities with mortality in men with non-dialysis-dependent chronic kidney disease. Nephrol Dial Transplant 2012; 27(2): 694 - 700. doi: 10.1093/ndt/gfr282
183. Hensen LCR, Goossens K, Delgado V et al. Prevalence of left ventricular systolic dysfunction in pre-dialysis and dialysis patients with preserved left ventricular ejection fraction. Eur J Heart Fail 2018; 20(3): 560 - 568. doi: 10.1002/ejhf.1077
184. Unger ED, Dubin RF, Deo R et al. Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 2016; 18(1): 103 - 12. doi: 10.1002/ejhf.445
185. Panoulas VF, Sulemane S, Konstantinou K et al. Early detection of subclinical left ventricular myocardial dysfunction in patients with chronic kidney disease. Eur Heart J Cardiovasc Imaging 2015; 16(5): 539 - 48. doi: 10.1093/ehjci/jeu229
186. Krishnasamy R, Isbel NM, Hawley CM et al. Left Ventricular Global Longitudinal Strain (GLS) Is a Superior Predictor of All-Cause and Cardiovascular Mortality When Compared to Ejection Fraction in Advanced Chronic Kidney Disease. PLoS One 2015; 10(5): e0127044. doi: 10.1371/journal.pone.0127044
187. Masson P, Webster AC, Hong M et al. Chronic kidney disease and the risk of stroke: a systematic review and meta-analysis. Nephrol Dial Transplant 2015; 30(7): 1162 - 9. doi: 10.1093/ndt/gfv009
188. Bucur RC, Panjwani DD, Turner L et al. Low bone mineral density and fractures in stages 3 - 5 CKD: an updated systematic review and meta-analysis. Osteoporos Int 2015; 26(2) 449 - 58. doi: 10.1007/s00198-014-2813-3
189. Jamal SA, Hayden JA, Beyene J. Low bone mineral density and fractures in long-term hemodialysis patients: a meta-analysis. Am J Kidney Dis 2007; 49(5): 674 - 81. doi: 10.1053/j.ajkd.2007.02.264
190. Nafisi Moghadam R, Amlelshahbaz AP, Namiranian N et. Comparative Diagnostic Performance of Ultrasonography and 99mTc-Sestamibi Scintigraphy for Parathyroid Adenoma in Primary Hyperparathyroidism; Systematic Review and MetaAnalysis. Asian Pac J Cancer Prev 2017; 18(12): 3195 - 3200. doi: 10.22034/APJCP.2017.18.12.3195
191. Kluijfhout WP, Pasternak JD, Beninato T et al. Diagnostic performance of computed tomography for parathyroid adenoma localization; a systematic review and meta-analysis. Eur J Radiol 2017; 88: 117 - 128. doi: 10.1016/j.ejrad.2017.01.004
192. Wong KK, Fig LM, Gross MD, Dwamena BA. Parathyroid adenoma localization with 99mTc-sestamibi SPECT/CT: a meta-analysis. Nucl Med Commun 2015; 36(4): 363 - 75. doi: 10.1097/MNM.0000000000000262
193. Luciano RL, Moeckel GW. Update on the Native Kidney Biopsy: Core Curriculum 2019. Am J Kidney Dis 2019; 73(3): 404 - 415. doi: 10.1053/j.ajkd.2018.10.011
194. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney Int Suppl 2012; 2: 139 - 1274
195. Xie X, Liu Y, Perkovic V et al. Renin-Angiotensin System Inhibitors and Kidney and Cardiovascular Outcomes in Patients With CKD: A Bayesian Network Meta-analysis of Randomized Clinical Trials. Am J Kidney Dis 2016; 67(5): 728 - 41. doi: 10.1053/j.ajkd.2015.10.011
196. Wu HY, Huang JW, Lin HJ et al. Comparative effectiveness of renin-angiotensin system blockers and other antihypertensive drugs in patients with diabetes: systematic review and bayesian network meta-analysis. BMJ 2013; 347: f6008. doi: 10.1136/bmj.f6008
197. Hou W, Lv J, Perkovic V et al. Effect of statin therapy on cardiovascular and renal outcomes in patients with chronic kidney disease: a systematic review and meta-analysis. Eur Heart J 2013; 34(24): 1807 - 17. doi: 10.1093/eurheartj/eht065
198. Chewcharat A, Takkavatakarn K, Isaranuwatchai S et al. Pleiotropic effects of antidiabetic agents on renal and cardiovascular outcomes: a meta-analysis of randomized controlled trials. Int Urol Nephrol 2020; 52(9): 1733 - 1745. doi: 10.1007/s11255-020-02520-z
199. Pei G, Tang Y, Tan L et al. Aerobic exercise in adults with chronic kidney disease (CKD): a meta-analysis. Int Urol Nephrol 2019; 51(10): 1787 - 1795. doi: 10.1007/s11255-019-02234-x
200. Zelniker TA, Wiviott SD, Raz I et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019; 393(10166): 31 - 39. doi: 10.1016/S0140-6736(18)32590-X
201. Seidu S, Kunutsor SK, Cos X et al. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: A systematic review and meta-analysis. Prim Care Diabetes 2018; 12(3): 265 - 283. doi: 10.1016/j.pcd.2018.02.001
202. Toyama T, Neuen BL, Jun M et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes Obes Metab 2019; 21(5): 1237 - 1250. doi: 10.1111/dom.13648
203. Feng C, Wu M, Chen Z et al. Effect of SGLT2 inhibitor on renal function in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Int Urol Nephrol 2019; 51(4): 655 - 669. doi: 10.1007/s11255-019-02112-6
204. Magee GM, Bilous RW, Cardwell CR et al. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia 2009; 52(4): 691 - 7. doi: 10.1007/s00125-009-1268-0
205. Yan B, Su X, Xu B et al. Effect of diet protein restriction on progression of chronic kidney disease: A systematic review and meta-analysis. PLoS One 2018; 13(11): e0206134. doi: 10.1371/joumal.pone.0206134
206. Zhang L, Wang Y, Xiong L et al. Exercise therapy improves eGFR, and reduces blood pressure and BMI in non-dialysis CKD patients: evidence from a meta-analysis. BMC Nephrol 2019; 20(1): 398. doi: 10.1186/s12882-019-1586-5
207. Wu X, Yang L, Wang Y et al. Effects of combined aerobic and resistance exercise on renal function in adult patients with chronic kidney disease: a systematic review and meta-analysis. Clin Rehabil 2020; 34(7): 851 - 865. doi: 10.1177/0269215520924459
208. Heiwe S, Jacobson SH. Exercise training for adults with chronic kidney disease. Cochrane Database Syst Rev 2011; (10): CD003236. doi: 10.1002/14651858.CD003236.pub2
209. Bentata Y, Karimi I, Benabdellah N et al. Does smoking increase the risk of progression of nephropathy and/or cardiovascular disease in type 2 diabetic patients with albuminuria and those without albuminuria? Am J Cardiovasc Dis 2016; 6(2): 66 - 9
210. Grams ME, Yang W, Rebholz CM et al. Risks of Adverse Events in Advanced CKD: The Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 2017; 70(3): 337 - 346. doi: 10.1053/j.ajkd.2017.01.050
211. Li K, Zou J, Ye Z et al. Effects of Bariatric Surgery on Renal Function in Obese Patients: A Systematic Review and Meta Analysis. PLoS One 2016; 11(10): e0163907. doi: 10.1371/joumal.pone.0163907
212. Geng DF, Sun WF, Yang L et al. Antiproteinuric effect of angiotensin receptor blockers in normotensive patients with proteinuria: a meta-analysis of randomized controlled trials. J Renin Angiotensin Aldosterone Syst 2014; 15(1): 44 - 51. doi: 10.1177/1470320312474054
213. F, Saint-Gerons D, D et al. Cardiovascular and Renal Outcomes of Renin-Angiotensin System Blockade in Adult Patients with Diabetes Mellitus: A Systematic Review with Network Meta-Analyses. PLoS Med 2016; 13(3): e1001971. doi: 10.1371/joumal.pmed.1001971
214. Hou FF, Xie D, Zhang X et al. Renoprotection of Optimal Antiproteinuric Doses (ROAD) Study: a randomized controlled study of benazepril and losartan in chronic renal insufficiency. J Am Soc Nephrol 2007; 18(6): 1889 - 98. doi: 10.1681/ASN.2006121372
215. Burgess E, Muirhead N, Rene de Cotret P et al. Supramaximal dose of candesartan in proteinuric renal disease. J Am Soc Nephrol 2009; 20(4): 893 - 900. doi: 10.1681/ASN.2008040416
216. Ricardo AC, Anderson CA, Yang W et al. Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 2015; 65(3): 412 - 24. doi: 10.1053/j.ajkd.2014.09.016
217. Liu Y, Ma X, Zheng J et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on cardiovascular events and residual renal function in dialysis patients: a meta-analysis of randomised controlled trials. BMC Nephrol 2017; 18(1): 206. doi: 10.1186/s12882-017-0605-7
218. Zhang L, Zeng X, Fu P, Wu HM. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for preserving residual kidney function in peritoneal dialysis patients. Cochrane Database Syst Rev 2014; (6): CD009120. doi: 10.1002/14651858.CD009120.pub2
219. Tian ML, Shen Y, Sun ZL, Zha Y. Efficacy and safety of combining pentoxifylline with angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker in diabetic nephropathy: a meta-analysis. Int Urol Nephrol 2015; 47(5): 815 - 22. doi: 10.1007/s11255-015-0968-2
220. Liu D, Wang LN, Li HX et al. Pentoxifylline plus ACEIs/ARBs for proteinuria and kidney function in chronic kidney disease: a meta-analysis. J Int Med Res 2017; 45(2): 383 - 398. doi: 10.1177/0300060516663094
221. JF, C, Muros de Fuentes M et al. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial. J Am Soc Nephrol 2015; 26(1): 220 - 229. doi: 10.1681/ASN.2014010012
222. Ghorbani A, Omidvar B, Beladi-Mousavi SS et al. The effect of pentoxifylline on reduction of proteinuria among patients with type 2 diabetes under blockade of angiotensin system: a double blind and randomized clinical trial. Nefrologia 2012; 32(6): 790 - 796. doi: 10.3265/Nefrologia.pre2012.Jun.11242
223. Renke M, Tylicki L, Rutkowski P et al. Effect of pentoxifylline on proteinuria, markers of tubular injury and oxidative stress in non-diabetic patients with chronic kidney disease - placebo controlled, randomized, cross-over study. Acta Biochim Pol 2010; 57(1): 119 - 123
224. Oliaei F, Hushmand S, Khafri S et al. Efficacy of pentoxifylline for reduction of proteinuria in type II diabetic patients. Caspian J Intern Med 2011; 2: 309 - 313
225. Lin SL, Chen YM, Chiang WC et al. Effect of pentoxifylline in addition to losartan on proteinuria and GFR in CKD: a 12-month randomized trial. Am J Kidney Dis 2008; 52(3): 464 - 474. doi: 10.1053/j.ajkd.2008.05.012
226. Navarro JF, Mora C, Muros M et al. Effects of pentoxifylline administration on urinary N-acetyl-beta-glucosaminidase excretion in type 2 diabetic patients: a short-term, prospective, randomized study. Am J Kidney Dis 2003; 42(2): 264 - 270. doi: 10.1016/s0272-6386(03)00651-6
227. Roozbeh J, Banihashemi MA, Ghezlou M et al. Captopril and combination therapy of captopril and pentoxifylline in reducing proteinuria in diabetic nephropathy. Ren Fail 2010; 32(2): 172 - 178. doi: 10.3109/08860221003602645
228. Perkins RM, Aboudara MC, Uy AL et al. Effect of pentoxifylline on GFR decline in CKD: a pilot, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis 2009; 53(4): 606 - 616. doi: 10.1053/j.ajkd.2008.11.026
229. Harmankaya O, Seber S, Yilmaz M. Combination of pentoxifylline with angiotensin converting enzyme inhibitors produces an additional reduction in microalbuminuria in hypertensive type 2 diabetic patients. Ren Fail 2003; 25(3): 465 - 470. doi: 10.1081/jdi-120021159
230. Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and micro vascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 2011; 343: d4169. doi: 10.1136/bmj.d4169
231. Hemmingsen B, Lund SS, Gluud C et al. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev 2013; (11): CD008143. doi: 10.1002/14651858.CD008143.pub3
232. Ismail-Beigi F, Craven T, Banerji MA et al. Effect of intensive treatment of hyperglycaemia on micro vascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 2010; 376(9739): 419 - 30. doi: 10.1016/S0140-6736(10)60576-4
233. Сахарный диабет 2 типа у взрослых. Клинические рекомендации, http://cr.rosminzdrav.ru/#!/schema/970
234. Qiu M, Ding LL, Wei XB et al. Comparative efficacy of GLP-1 RAs and SGLT2is for prevention of major adverse cardiovascular events in type 2 diabetes: a network meta-analysis. J Cardiovasc Pharmacol 2020 Oct 22. doi: 10.1097/FJC.0000000000000916. Online ahead of print
235. Kristensen SL, R, Jliund PS et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol 2019; 7(10): 776 - 785. doi: 10.1016/S2213-8587(19)30249-9
236. Ettehad D, Emdin CA, Kiran A et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387(10022): 957 - 967. doi: 10.1016/S0140-6736(15)01225-8
237. Aggarwal R, Petrie B, Bala W, Chiu N. Mortality Outcomes With Intensive Blood Pressure Targets in Chronic Kidney Disease Patients. Hypertension 2019; 3(6): 1275 - 1282. doi: 10.1161/HYPERTENSIONAHA.119.12697
238. Tsai WC, Wu HY, Peng YS et al. Association of Intensive Blood Pressure Control and Kidney Disease Progression in Nondiabetic Patients With Chronic Kidney Disease: A Systematic Review and Meta-analysis. JAMA Intern Med 2017; 177(6): 792 - 799. doi: 10.1001/jamainternmed.2017.0197
239. Ku E, Samak MJ, Toto R et al. Effect of Blood Pressure Control on Long-Term Risk of End-Stage Renal Disease and Death Among Subgroups of Patients With Chronic Kidney Disease. J Am Heart Assoc 2019; 8(16): e012749. doi: 10.1161/JAHA.119.012749
240. Beddhu S, Greene T, Boucher R et al. Intensive systolic blood pressure control and incident chronic kidney disease in people with and without diabetes mellitus: secondary analyses of two randomised controlled trials. Lancet Diabetes Endocrinol 2018; 6(7): 555 - 563. doi: 10.1016/S2213-8587(18)30099-8
241. Rocco MV, Sink KM, Lovato LC et al. Effects of Intensive Blood Pressure Treatment on Acute Kidney Injury Events in the Systolic Blood Pressure Intervention Trial (SPRINT). Am J Kidney Dis 2018; 71(3): 352 - 361. doi: 10.1053/j.ajkd.2017.08.021
242. Chi G, Jamil A, Jamil U et al. Effect of intensive versus standard blood pressure control on major adverse cardiac events and serious adverse events: A bivariate analysis of randomized controlled trials. Clin Exp Hypertens 2018; 1 - 8. doi: 10.1080/10641963.2018.1462373
243. SPRINT Research Group. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med 2015; 373(22): 2103 - 16. doi: 10.1056/NEJMoa1511939
244. Huang RS, Cheng YM, Zeng XX et al. Renoprotective Effect of the Combination of Renin-angiotensin System Inhibitor and Calcium Channel Blocker in Patients with Hypertension and Chronic Kidney Disease. Chin Med J (Engl) 2016; 29(5): 562 - 9. doi: 10.4103/0366-6999.176987
245. Thamcharoen N, Susantitaphong P, Wongrakpanich S et al. Effect of N- and T-type calcium channel blocker on proteinuria, blood pressure and kidney function in hypertensive patients: a meta-analysis. Hypertens Res 2015; 38(12): 847 - 55. doi: 10.1038/hr.2015.69
246. Kario K, Tomitani N, Kanegae H et al. Comparative Effects of an Angiotensin II Receptor Blocker (ARB)/Diuretic vs. ARB/Calcium-Channel Blocker Combination on Uncontrolled Nocturnal Hypertension Evaluated by Information and Communication Technology-Based Nocturnal Home Blood Pressure Monitoring - The NOCTURNE Study. Circ J 2017; 81(7): 948 - 957. doi: 10.1253/circj.CJ-17-0109
247. Zhao HJ, Li Y, Liu SM et al. Effect of calcium channels blockers and inhibitors of the renin-angiotensin system on renal outcomes and mortality in patients suffering from chronic kidney disease: systematic review and meta-analysis. Ren Fail 2016; 38(6): 849 - 56. doi: 10.3109/0886022X.2016.1165065
248. Lin YC, Lin JW, Wu MS et al. Effects of calcium channel blockers comparing to angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in patients with hypertension and chronic kidney disease stage 3 to 5 and dialysis: A systematic review and meta-analysis. PLoS One 2017; 12(12): e0188975. doi: 10.1371/joumal.pone.0188975
249. Pongpanich P, Pitakpaiboonkul P, Takkavatakarn K et al. The benefits of angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers combined with calcium channel blockers on metabolic, renal, and cardiovascular outcomes in hypertensive patients: a meta-analysis. Int Urol Nephrol 2018; 50(12): 2261 - 2278. doi: 10.1007/s11255-018-1991-x
250. DM, Visser WJ, Middel I et al. A Randomized Trial of Distal Diuretics versus Dietary Sodium Restriction for Hypertension in Chronic Kidney Disease. J Am Soc Nephrol 2020; 31(3): 650 - 662. doi: 10.1681/ASN.2019090905
251. Heerspink HJ, Ninomiya T, Perkovic V et al. Effects of a fixed combination of perindopril and indapamide in patients with type 2 diabetes and chronic kidney disease. Eur Heart J 2010; 31(23): 2888 - 96. doi: 10.1093/eurheartj/ehq139
252. Abe M, Okada K, Maruyama T, Matsumoto K. Antiproteinuric and blood pressure-lowering effects of a fixed-dose combination of losartan and hydrochlorothiazide in hypertensive patients with stage 3 chronic kidney disease. Pharmacotherapy 2009; 29(9): 1061 - 72. doi: 10.1592/phco.29.9.1061
253. Ando K, Nitta K, Rakugi H et al. Comparison of the antialbuminuric effects of benidipine and hydrochlorothiazide in Renin-Angiotensin System (RAS) inhibitor-treated hypertensive patients with albuminuria: the COSMO-CKD (COmbination Strategy on Renal Function of Benidipine or Diuretics TreatMent with RAS inhibitOrs in a Chronic Kidney Disease Hypertensive Population) study. Int J Med Sci 2014; 11(9): 897 - 904. doi: 10.7150/ijms.9026
254. Cheng Y, Huang R, Kim S et al. Renoprotective effects of renin-angiotensin system inhibitor combined with calcium channel blocker or diuretic in hypertensive patients: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2016; 95(28): e4167. doi: 10.1097/MD.0000000000004167
255. Vasavada N, Saha C, Agarwal R. A double-blind randomized crossover trial of two loop diuretics in chronic kidney disease. Kidney Int 2003; 64(2): 632 - 40. doi: 10.1046/j.1523-1755.2003.00124.x
256. Mourad G, Haecker W, Mion C. Dose-dependent salidiuretic efficacy of torasemide in comparison to furosemide and placebo in advanced renal failure. Arzneimittelforschung 1988; 38(1A): 205 - 8
257. Dussol B, Moussi-Frances J, Morange S et al. A pilot study comparing furosemide and hydrochlorothiazide in patients with hypertension and stage 4 or 5 chronic kidney disease. J Clin Hypertens (Greenwich) 2012; 14(1): 32 - 7. doi: 10.1111/j.1751-7176.2011.00564.x
258. Khan YH, Sarriff A, Adnan AS et al. Chronic Kidney Disease, Fluid Overload and Diuretics: A Complicated Triangle. PLoS One 2016; 11(7): e0159335. doi: 10.1371/joumal.pone.0159335
259. Zhang X, Zhao Q. Association of Thiazide-Type Diuretics With Glycemic Changes in Hypertensive Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. J Clin Hypertens (Greenwich) 2016; 18(4): 342 - 51. doi: 10.1111/jch.12679
260. Hall JJ, Eurich DT, Nagy D et al. Thiazide Diuretic-Induced Change in Fasting Plasma Glucose: a Meta-analysis of Randomized Clinical Trials. J Gen Intern Med 2020; 35(6): 1849 - 1860. doi: 10.1007/s11606-020-05731-3
261. Bolignano D, Palmer SC, Navaneethan SD, Strippoli GF. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev 2014; (4): CD007004. doi: 10.1002/14651858.CD007004.pub3
262. Alexandrou ME, Papagianni A, Tsapas A et al. Effects of mineralocorticoid receptor antagonists in proteinuric kidney disease: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2019; 37(12): 2307 - 2324. doi: 10.1097/HJH.0000000000002187
263. Currie G, Taylor AH, Fujita T et al. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol 2016 Sep 8; 17(1): 127. doi: 10.1186/s12882-016-0337-0
264. Li Y, Xie N, Liang M. Aldosterone Antagonists Reduce the Risk of Cardiovascular Mortality in Dialysis Patients: A Meta-Analysis. Evid Based Complement Alternat Med 2019; 2019: 1925243. doi: 10.1155/2019/1925243
265. Quach K, Lvtvyn L, Baigent C et al. The Safety and Efficacy of Mineralocorticoid Receptor Antagonists in Patients Who Require Dialysis: A Systematic Review and Meta-analysis. Am J Kidney Dis 2016; 68(4): 591 - 598. doi: 10.1053/j.ajkd.2016.04.011
266. Matsumoto Y, Mori Y, Kageyama S et al. Spironolactone reduces cardiovascular and cerebrovascular morbidity and mortality in hemodialysis patients. J Am Coll Cardiol 2014; 63(6): 528 - 36. doi: 10.1016/j.jacc.2013.09.056
267. Ito Y, Mizuno M, Suzuki Y et al. Long-term effects of spironolactone in peritoneal dialysis patients. J Am Soc Nephrol 2014; 25(5): 1094 - 102. doi: 10.1681/ASN.2013030273
268. Lin C, Zhang Q, Zhang H, Lin A. Long-Term Effects of Low-Dose Spironolactone on Chronic Dialysis Patients: A Randomized Placebo-Controlled Study. J Clin Hypertens (Greenwich) 2016; 18(2): 121 - 8. doi: 10.1111/jch.12628
269. Feniman-De-Stefano GM, Zanati-Basan SG, De Stefano LM et al. Spironolactone is secure and reduces left ventricular hypertrophy in hemodialysis patients. Ther Adv Cardiovasc Dis 2015; 9(4): 158 - 67. doi: 10.1177/1753944715591448
270. Walsh M, Manns B, Garg AX et al. The Safety of Eplerenone in Hemodialysis Patients: A Noninferiority Randomized Controlled Trial. Clin J Am Soc Nephrol 2015; 10(9): 1602 - 8. doi: 10.2215/CJN.12371214
271. Flevari P, Kalogeropoulou S, Drakou A et al. Spironolactone improves endothelial and cardiac autonomic function in non heart failure hemodialysis patients. J Hypertens 2013; 31(6): 1239 - 44. doi: 10.1097/HJH.0b013e32835f955c
272. Di Iorio BR, Bellasi A, Raphael KL et al. Treatment of metabolic acidosis with sodium bicarbonate delays progression of chronic kidney disease: the UBI Study. J Nephrol 2019; 32(6): 989 - 1001. doi: 10.1007/s40620-019-00656-5
273. Kovesdy CP, Matsushita K, Sang Y et al. Serum potassium and adverse outcomes across the range of kidney function: a CKD Prognosis Consortium meta-analysis. Eur Heart J 2018; 39(11): 1535 - 1542. doi: 10.1093/eurheartj/ehy100
274. Zhang Y, Chen P, Chen J et al. Association of Low Serum Potassium Levels and Risk for All-Cause Mortality in Patients With Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Ther Apher Dial 2019 Feb; 23(1): 22 - 31. doi: 10.1111/1744 - 9987.12753
275. Cowan AC, Gharib EG, Weir MA. Advances in the management of hyperkalemia in chronic kidney disease. Curr Opin Nephrol Hypertens 2017; 26(3): 235 - 239. doi: 10.1097/MNH.0000000000000320
276. Clase CM, Carrero JJ, Ellison DH et al. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2020; 97(1): 42 - 61. doi: 10.1016/j.kint.2019.09.018
277. Gritter M, Vogt L, Yeung SMH et al. Rationale and Design of a Randomized Placebo-Controlled Clinical Trial Assessing the Renoprotective Effects of Potassium Supplementation in Chronic Kidney Disease. Nephron 2018; 140(1): 48 - 57. doi: 10.1159/000490261
278. Morris A, Krishnan N, Kimani PK, Lycett D. Effect of Dietary Potassium Restriction on Serum Potassium, Disease Progression, and Mortality in Chronic Kidney Disease: A Systematic Review and Meta-Analysis. J Ren Nutr 2020; 30(4): 276 - 285. doi: 10.1053/j.jm.2019.09.009
279. Kalantar-Zadeh K, Fouque D. Nutritional Management of Chronic Kidney Disease. N Engl J Med 2017; 377(18): 1765 - 1776. doi: 10.1056/NEJMral700312
280. Kashihara N, Kohsaka S, Kanda E et al. Hyperkalemia in Real-World Patients Under Continuous Medical Care in Japan. Kidney Int Rep 2019; 4(9): 1248 - 1260. doi: 10.1016/j.ekir.2019.05.018
281. Palmer BF, Clegg DJ. Treatment of Abnormalities of Potassium Homeostasis in CKD. Adv Chronic Kidney Dis 2017; 24(5): 319 - 324. doi: 10.1053/j.ackd.2017.06.001
282. Mahoney BA, Smith WA, Lo DS et al. Emergency interventions for hyperkalaemia. Cochrane Database Syst Rev 2005; 2005(2): CD003235. doi: 10.1002/14651858.CD003235.pub2
283. Liou HH, Chiang SS, Wu SC et al. Intravenous infusion or nebulization of salbutamol for treatment of hyperkalemia in patients with chronic renal failure. Zhonghua Yi Xue Za Zhi (Taipei) 1994; 53(5): 276 - 81
284. Mandelberg A, Krupnik Z, Houri S et al. Salbutamol metered-dose inhaler with spacer for hyperkalemia: how fast? How safe? Chest 1999; 115(3): 617 - 22. doi: 10.1378/chest.115.3.617
285. Allon M, Copkney C. Albuterol and insulin for treatment of hyperkalemia in hemodialysis patients. Kidney International 1990; 38(5): 869 - 72. doi: 10.1038/ki.1990.284
286. Moussavi K, Nguyen LT, Hua H, Fitter S. Comparison of IV Insulin Dosing Strategies for Hyperkalemia in the Emergency Department. Crit Care Explor 2020; 2(4): e0092. doi: 10.1097/CCE.0000000000000092
287. Harel Z, Kamel KS. Optimal Dose and Method of Administration of Intravenous Insulin in the Management of Emergency Hyperkalemia: A Systematic Review. PLoS One 2016; 11(5): e0154963. doi: 10.1371/joumal.pone.0154963
288. Moussavi K, Fitter S, Gabrielson SW et al. Management of Hyperkalemia With Insulin and Glucose: Pearls for the Emergency Clinician. J Emerg Med 2019; 57(1): 36 - 42. doi: 10.1016/j.jemermed.2019.03.043
289. A, Deakin CD, Soar J et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 4. Cardiac arrest in special circumstances. Resuscitation 2015; 95: 148 - 201. doi: 10.1016/j.resuscitation.2015.07.017
290. Suki WN. Use of diuretics in chronic renal failure. Kidney Int Suppl 1997; 59: S33 - 5
291. Lepage L, Dufour AC, Doiron J et al. Randomized Clinical Trial of Sodium Polystyrene Sulfonate for the Treatment of Mild Hyperkalemia in CKD. Clin J Am Soc Nephrol 2015; 10(12): 2136 - 42. doi: 10.2215/CJN.03640415
292. Wang J, Lv MM, Zach O et al. Calcium-Polystyrene Sulfonate Decreases Inter-Dialytic Hyperkalemia in Patients Undergoing Maintenance Hemodialysis: A Prospective, Randomized, Crossover Study. Ther Apher Dial 2018; 22(6): 609 - 616. doi: 10.1111/1744-9987.12723
293. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 2009; 20(9): 2075 - 84. doi: 10.1681/ASN.2008111205
294. Mahajan A, Simoni J, Sheather SJ et al. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int 2010; 78(3): 303 - 9. doi: 10.1038/ki.2010.129
295. Dubey AK, Sahoo J, Vairappan B et al. Correction of metabolic acidosis improves muscle mass and renal function in chronic kidney disease stages 3 and 4: a randomized controlled trial. Nephrol Dial Transplant 2020; 35(1): 121 - 129. doi: 10.1093/ndt/gfy214
296. Sodium Bicarbonate Dosage. https://www.drugs.com/dosage/sodium-bicarbonate.html
297. Cholesterol Treatment Trialists" (CTT) Collaboration. Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: a meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol 2016; 4(10): 829 - 39. doi: 10.1016/S2213-8587(16)30156-5
298. Navaneethan SD, Pansini F, Perkovic V et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev 2009; (2): CD007784. doi: 10.1002/14651858.CD007784
299. Sanguankeo A, Upala S, Cheungpasitporn W et al. Effects of Statins on Renal Outcome in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis. PLoS One 2015; 10(7): e0132970. doi: 10.1371/journal.pone.0132970
300. Barylski M, Nikfar S, Mikhailidis DP et al. Statins decrease all-cause mortality only in CKD patients not requiring dialysis therapy--a meta-analysis of 11 randomized controlled trials involving 21,295 participants. Pharmacol Res 2013; 72: 35 - 44. doi: 10.1016/j.phrs.2013.03.007
301. Silbernagel G, Fauler G, Genser B et al. Intestinal cholesterol absorption, treatment with atorvastatin, and cardiovascular risk in hemodialysis patients. J Am Coll Cardiol 2015; 65(21): 2291 - 8. doi: 10.1016/j.jacc.2015.03.551
302. Rhee CM, Ahmadi SF, Kovesdy CP, Kalantar-Zadeh K. Low-protein diet for conservative management of chronic kidney disease: a systematic review and meta-analysis of controlled trials. J Cachexia Sarcopenia Muscle 2018; 9(2): 235 - 245. doi: 10.1002/jcsm.12264
303. Hahn D, Hodson EM, Fouque D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst Rev 2018; 10(10): CD001892. doi: 10.1002/14651858.CD001892.pub4
304. Jing Z, Wei-Jie Y. Effects of soy protein containing isoflavones in patients with chronic kidney disease: A systematic review and meta-analysis. Clin Nutr 2016; 35(1): 117 - 124. doi: 10.1016/j.clnu.2015.03.012
305. Zhang J, Liu J, Su J, Tian F. The effects of soy protein on chronic kidney disease: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2014; 68(9): 987 - 93. doi: 10.1038/ejcn.2014.112
306. Anderson JW, Bush HM. Soy protein effects on serum lipoproteins: a quality assessment and meta-analysis of randomized, controlled studies. J Am Coll Nutr 2011; 30(2): 79 - 91. doi: 10.1080/07315724.2011.10719947
307. Di Iorio BR, Rocchetti MT, De Angelis M et al. Nutritional Therapy Modulates Intestinal Microbiota and Reduces Serum Levels of Total and Free Indoxyl Sulfate and P-Cresyl Sulfate in Chronic Kidney Disease (Medika Study). J Clin Med 2019; 8(9): 1424. doi: 10.3390/jcm8091424
308. Li A, Lee HY, Lin YC. The Effect of Ketoanalogues on Chronic Kidney Disease Deterioration: A MetaAnalysis. Nutrients 2019; 11(5): 957. doi: 10.3390/nu11050957
309. Chewcharat A, Takkavatakarn K, Wongrattanagorn S et al. The Effects of Restricted Protein Diet Supplemented With Ketoanalogue on Renal Function, Blood Pressure, Nutritional Status, and Chronic Kidney Disease-Mineral and Bone Disorder in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis. J Ren Nutr 2020; 30(3): 189 - 199. doi: 10.1053/j.jrn.2019.07.005
310. Jiang Z, Zhang X, Yang L, Li Z, Qin W. Effect of restricted protein diet supplemented with keto analogues in chronic kidney disease: a systematic review and meta-analysis. Int Urol Nephrol 2016; 48(3): 409 - 18. doi: 10.1007/s11255-015-1170-2
311. Jiang Z, Tang Y, Yang L et al. Effect of restricted protein diet supplemented with keto analogues in end-stage renal disease: a systematic review and meta-analysis. Int Urol Nephrol 2018; 50(4): 687 - 694. doi: 10.1007/s11255-017-1713-9
312. Palmer SC, Saglimbene V, Mavridis D et al. Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: a network meta-analysis. Cochrane Database Syst Rev 2014; 2014(12): CD010590. doi: 10.1002/14651858.CD010590.pub2
313. Shepshelovich D, Rozen-Zvi B, Avni T et al. Intravenous Versus Oral Iron Supplementation for the Treatment of Anemia in CKD: An Updated Systematic Review and Meta-analysis. Am J Kidney Dis 2016; 68(5): 677 - 690. doi: 10.1053/j.ajkd.2016.04.018
314. O"Lone EL, Hodson EM, Nistor I et al. Parenteral versus oral iron therapy for adults and children with chronic kidney disease. Cochrane Database Syst Rev 2019; 2(2): CD007857. doi: 10.1002/14651858.CD007857.pub3
315. Onken JE, Bregman DB, Harrington RA et al. Ferric carboxymaltose in patients with iron-deficiency anemia and impaired renal function: the REPAIR-IDA trial. Nephrol Dial Transplant 2014; 29(4): 833 - 42. doi: 10.1093/ndt/gft251
316. Agarwal R, Kusek JW, Pappas MK. A randomized trial of intravenous and oral iron in chronic kidney disease. Kidney Int 2015; 88(4): 905 - 14. doi: 10.1038/ki.2015.163
317. Van Wyck DB, Roppolo M, Martinez CO et al. A randomized, controlled trial comparing IV iron sucrose to oral iron in anemic patients with nondialysis-dependent CKD. Kidney Int 2005; 68(6): 2846 - 56
318. Macdougall IC, Bock AH, Carrera F et al. FIND-CKD: a randomized trial of intravenous ferric carboxymaltose versus oral iron in patients with chronic kidney disease and iron deficiency anaemia. Nephrol Dial Transplant 2014; 29(11): 2075 - 84. doi: 10.1093/ndt/gfu201
319. Macdougall IC, Strauss WE, McLaughlin J et al. A randomized comparison of ferumoxytol and iron sucrose for treating iron deficiency anemia in patients with CKD. Clin J Am Soc Nephrol 2014; 9(4): 705 - 12. doi: 10.2215/CJN.05320513
320. Salim SA, Cheungpasitporn W, Elmaraezy A et al. Infectious complications and mortality associated with the use of IV iron therapy: a systematic review and meta-analysis. Int Urol Nephrol 2019; 51(10): 1855 - 1865. doi: 10.1007/s11255-019-02273-4
321. Besarab A, Amin N, Ahsan M et al. Optimization of epoetin therapy with intravenous iron therapy in hemodialysis patients. J Am Soc Nephrol 2000; 11(3): 530 - 8
322. Roger SD, Tio M, Park HC et al. Intravenous iron and erythropoiesis-stimulating agents in haemodialysis: A systematic review and meta-analysis. Nephrology (Carlton) 2017; 22(12): 969 - 976. doi: 10.1111/nep.12940
323. United States Iron Sucrose (Venofer) Clinical Trials Group. Effect of intravenous iron sucrose in peritoneal dialysis patients who receive erythropoiesis-stimulating agents for anemia: a randomized, controlled trial. Clin J Am Soc Nephrol 2006; 1(3): 475 - 82. doi: 10.2215/CJN.01541005
324. Bhandari S, Kalra PA, Kothari J et al. A randomized, open-label trial of iron isomaltoside 1000 compared with iron sucrose as maintenance therapy in haemodialysis patients. Nephrol Dial Transplant 2015; 30(9): 1577 - 89. doi: 10.1093/ndt/gfv096
325. Macdougall IC, White C, Anker SD et al. Intravenous Iron in Patients Undergoing Maintenance Hemodialysis. N Engl J Med 2019; 380(5): 447 - 458. doi: 10.1056/NEJMoa1810742
326. Macdougall IC, Strauss WE, Dahl NV et al. Ferumoxytol for iron deficiency anemia in patients undergoing hemodialysis. The FACT randomized controlled trial. Clin Nephrol 2019; 91(4): 237 - 245. doi: 10.5414/CN109512
327. Coyne DW, Kapoian T, Suki W et al. Ferric gluconate is highly efficacious in anemic hemodialysis patients with high serum ferritin and low transferrin saturation: results of the Dialysis Patients" Response to IV Iron with Elevated Ferritin (DRIVE) Study. J Am Soc Nephrol 2007; 18(3): 975 - 84. doi: 10.1681/ASN.2006091034
328. Kapoian T, O"Mara NB, Singh AK et al. Ferric gluconate reduces epoetin requirements in hemodialysis patients with elevated ferritin. J Am Soc Nephrol 2008; 19(2): 372 - 9. doi: 10.1681/ASN.2007050606
329. Adler M, F, D et al. The Impact of Iron Supplementation for Treating Anemia in Patients with Chronic Kidney Disease: Results from Pairwise and Network Meta-Analyses of Randomized Controlled Trials. Pharmaceuticals (Basel) 2020; 13(5): 85. doi: 10.3390/ph13050085
330. Albaramki J, Hodson EM, Craig JC, Webster AC. Parenteral versus oral iron therapy for adults and children with chronic kidney disease. Cochrane Database Syst Rev 2012; 1: CD007857. doi: 10.1002/14651858.CD007857.pub2
331. Hougen I, Collister D, Bourrier M et al. Safety of Intravenous Iron in Dialysis: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol 2018; 13(3): 457 - 467. doi: 10.2215/CJN.05390517
332. Hahn D, Cody JD, Hodson EM. Frequency of administration of erythropoiesis-stimulating agents for the anaemia of end-stage kidney disease in dialysis patients. Cochrane Database Syst Rev 2014; (5): CD003895. doi: 10.1002/14651858.CD003895.pub3
333. Halm D, Esezobor CI, Elserafy N et al. Short-acting erythropoiesis-stimulating agents for anaemia in predialysis patients. Cochrane Database Syst Rev 2017; 1(1): CD011690. doi: 10.1002/14651858.CD011690.pub2
334. Amato L, Addis A, Saulle R et al. Comparative efficacy and safety in ESA biosimilars vs. originators in adults with chronic kidney disease: a systematic review and meta-analysis. J Nephrol 2018; 31(3): 321 - 332. doi: 10.1007/s40620-017-0419-5
335. Palmer SC, Saglimbene V, Craig JC et al. Darbepoetin for the anaemia of chronic kidney disease. Cochrane Database Syst Rev 2014; (3): CD009297. doi: 10.1002/14651858.CD009297.pub2
336. Saglimbene VM, Palmer SC, Ruospo M et al. Continuous erythropoiesis receptor activator (CERA) for the anaemia of chronic kidney disease. Cochrane Database Syst Rev 2017; 8(8): CD009904. doi: 10.1002/14651858.CD009904.pub2
337. Wilhelm-Leen ER, Winkelmayer WC. Mortality risk of darbepoetin alfa versus epoetin alfa in patients with CKD: systematic review and meta-analysis. Am J Kidney Dis 2015; 66(1): 69 - 14. doi: 10.1053/j.ajkd.2014.12.012
338. WH. Differentiating factors between erythropoiesis-stimulating agents: an update to selection for anaemia of chronic kidney disease. Drugs 2013; 73(2): 117 - 30. doi: 10.1007/s40265-012-0002-2
339. Vinhas J, Barreto C, J et al. Treatment of anaemia with erythropoiesis-stimulating agents in patients with chronic kidney disease does not lower mortality and may increase cardiovascular risk: a meta-analysis. Nephron Clin Pract 2012; 121(3-4): c95 - 101. doi: 10.1159/000345158
340. Ye Y, Liu H, Chen Y et al. Hemoglobin targets for the anemia in patients with dialysis-dependent chronic kidney disease: a meta-analysis of randomized, controlled trials. Ren Fail 2018; 40(1): 671 - 679. doi: 10.1080/0886022X.2018.1532909
341. Liu H, Ye Y, Chen Y et al. Therapeutic targets for the anemia of predialysis chronic kidney disease: a meta-analysis of randomized, controlled trials. J Investig Med 2019; 61(6): 1002 - 1008. doi: 10.1136/jim-2018-000915
342. Palmer SC, Navaneethan SD, Craig JC et al. Meta-analysis: erythropoiesis-stimulating agents in patients with chronic kidney disease. Ann Intern Med 2010; 153(1): 23 - 33. doi: 10.7326/0003-4819-153-1-201007060-00252
343. Strippoli GF, Craig JC, Manno C, Schena FP. Hemoglobin targets for the anemia of chronic kidney disease: a meta-analysis of randomized, controlled trials. J Am Soc Nephrol 2004; 15(12): 3154 - 65. doi: 10.1097/01.ASN.0000145436.09176.A7
344. Strippoli GF, Navaneethan SD, Craig JC. Haemoglobin and haematocrit targets for the anaemia of chronic kidney disease. Cochrane Database Syst Rev 2006; (4): CD003967. doi: 10.1002/14651858.CD003967.pub2
345. Yarnoff BO, Hoerger TJ, Simpson SA et al. The Cost-Effectiveness of Anemia Treatment for Persons with Chronic Kidney Disease. PLoS One 2016; 11(7): e0157323. doi: 10.1371/joumal.pone.0157323
346. FDA Drug Safety Communication: Modified dosing recommendations to improve the safe use of Erythropoiesis-Stimulating Agents (ESAs) in chronic kidney disease. Available at: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-modified-dosing-recommendations-improve-safe-use-erythropoiesis
347. Singh AK, Szczech L, Tang KL et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med2006; 355(20): 2085 - 98. doi: 10.1056/NEJMoa065485
348. Besarab A, Bolton WK, Browne JK et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 1998; 339(9): 584 - 90. doi: 10.1056/NEJM199808273390903
349. TB, Locatelli F, Clyne N et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med 2006; 355(20): 2071 - 84. doi: 10.1056/NEJMoa062276
350. Pfeffer MA, Burdmann EA, Cen CY et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med 2009; 361(21): 2019 - 32. doi: 10.1056/NEJMoa0907845
351. Parfrey PS, Lauve M, Latremouille-Viau D, Lefebvre P. Erythropoietin therapy and left ventricular mass index in CKD and ESRD patients: a meta-analysis. Clin J Am Soc Nephrol 2009 Apr; 4(4): 755 - 62. doi: 10.2215/CJN.02730608
352. Guedes M, Guetter CR, Erbano LHO et al. Physical health-related quality of life at higher achieved hemoglobin levels among chronic kidney disease patients: a systematic review and meta-analysis. BMC Nephrol 2020; 21(1): 259. doi: 10.1186/s12882-020-01912-8
353. Koulouridis I, Alfayez M, Trikalinos TA et al. Dose of erythropoiesis-stimulating agents and adverse outcomes in CKD: a metaregression analysis. Am J Kidney Dis 2013; 61(1): 44 - 56. doi: 10.1053/j.ajkd.2012.07.014
354. Palmer SC, Hayen A, Macaskill P et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA 2011; 305(11): 1119 - 27. doi: 10.1001/jama.2011.308
355. Block GA, Wheeler DC, Persky MS et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol 2012; 23(8): 1407 - 15. doi: 10.1681/ASN.2012030223
356. Moe SM, Zidehsarai MP, Chambers MA et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol 2011; 6(2): 257 - 64. doi: 10.2215/CJN.05040610
357. Sigrist M, Tang M, Beaulieu M et al. Responsiveness of FGF-23 and mineral metabolism to altered dietary phosphate intake in chronic kidney disease (CKD): results of a randomized trial. Nephrol Dial Transplant 2013; 28(1): 161 - 9. doi: 10.1093/ndt/gfs405
358. Chang AR, Miller ER 3rd, Anderson CA et al. Phosphorus Additives and Albuminuria in Early Stages of CKD: A Randomized Controlled Trial. Am J Kidney Dis 2017; 69(2): 200 - 209. doi: 10.1053/j.ajkd.2016.08.029
359. Pisani A, Riccio E, Bellizzi V et al. 6-tips diet: a simplified dietary approach in patients with chronic renal disease. A clinical randomized trial. Clin Exp Nephrol 2016; 20(3): 433 - 42. doi: 10.1007/s10157-015-1172-5
360. Garneata L, Stancu A, Dragomir D et al. Ketoanalogue-Supplemented Vegetarian Very Low-Protein Diet and CKD Progression. J Am Soc Nephrol 2016; 27(7): 2164 - 76. doi: 10.1681/ASN.2015040369
361. de Fornasari ML, Dos Santos Sens YA. Replacing Phosphorus-Containing Food Additives With Foods Without Additives Reduces Phosphatemia in End-Stage Renal Disease Patients: A Randomized Clinical Trial. J Ren Nutr 2017; 27(2): 97 - 105. doi: 10.1053/j.jm.2016.08.009
362. Lou LM, Caverni A, Gimeno JA et al. Dietary intervention focused on phosphate intake in hemodialysis patients with hyperphosphoremia. Clin Nephrol 2012; 77(6): 476 - 83
363. Sullivan C, Sayre SS, Leon JB et al. Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: a randomized controlled trial. JAMA 2009; 301(6): 629 - 35. doi: 10.1001/jama.2009.96
364. Murali KM, Mullan J, Roodenrys S et al. Strategies to improve dietary, fluid, dialysis or medication adherence in patients with end stage kidney disease on dialysis: A systematic review and meta-analysis of randomized intervention trials. PLoS One 2019; 14(1): e0211479. doi: 10.1371/journal.pone.0211479
365. Caldeira D, Amaral T, David C, Sampaio C. Educational strategies to reduce serum phosphorus in hyperphosphatemic patients with chronic kidney disease: systematic review with meta-analysis. J Ren Nutr 2011; 21(4): 285 - 94. doi: 10.1053/j.jrn.2010.11.006
366. Shi Y, Zhao Y, Liu J et al. Educational intervention for metabolic bone disease in patients with chronic kidney disease: a systematic review and meta-analysis. J Ren Nutr 2014; 24(6): 371 - 84. doi: 10.1053/j.jrn.2014.06.007
367. Milazi M, Bonner A, Douglas C. Effectiveness of educational or behavioral interventions on adherence to phosphate control in adults receiving hemodialysis: a systematic review. JBI Database System Rev Implement Rep 2017; 15(4): 971 - 1010. doi: 10.11124/JBISRIR-2017-003360
368. Karavetian M, de Vries N, Rizk R, Elzein H. Dietary educational interventions for management of hyperphosphatemia in hemodialysis patients: a systematic review and meta-analysis. Nutr Rev 2014; 72(7): 471 - 82. doi: 10.1111/nure.12115
369. Daugirdas JT, Chertow GM, Larive B et al. Effects of frequent hemodialysis on measures of CKD mineral and bone disorder. J Am Soc Nephrol 2012; 23(4): 727 - 38. doi: 10.1681/ASN.2011070688
370. Zimmerman DL, Nesrallah GE, Chan CT et al. Dialysate calcium concentration and mineral metabolism in long and long-frequent hemodialysis: a systematic review and meta-analysis for a Canadian Society of Nephrology clinical practice guideline. Am J Kidney Dis 2013; 62(1): 97 - 111. doi: 10.1053/j.ajkd.2013.02.357
371. Cornelis T, van der Sande FM, Eloot S et al. Acute hemodynamic response and uremic toxin removal in conventional and extended hemodialysis and hemodiafiltration: a randomized crossover study. Am J Kidney Dis 2014; 64(2): 247 - 56. doi: 10.1053/j.ajkd.2014.02.016
372. Walsh M, Manns BJ, Klarenbach S et al. The effects of nocturnal compared with conventional hemodialysis on mineral metabolism: A randomized-controlled trial. Hemodial Int 2010; 14(2): 174 - 81. doi: 10.1111/j.1542-4758.2009.00418.x
373. Culleton BF, Walsh M, Klarenbach SW et al. Effect of frequent nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA 2007; 298(11): 1291 - 9. doi: 10.1001/jama.298.11.1291
374. Gutzwiller JP, Schneditz D, Huber AR et al. Increasing blood flow increases kt/V(urea) and potassium removal but fails to improve phosphate removal. Clin Nephrol 2003; 59(2): 130 - 6. doi: 10.5414/cnp59130
375. Vaithilingam I, Polkinghorne KR, Atkins RC, Kerr PG. Time and exercise improve phosphate removal in hemodialysis patients. Am J Kidney Dis 2004; 43(1): 85 - 9. doi: 10.1053/j.ajkd.2003.09.016
376. Gutzwiller JP, Schneditz D, Huber AR et al. Estimating phosphate removal in haemodialysis: an additional tool to quantify dialysis dose. Nephrol Dial Transplant 2002; 17(6): 1037 - 44. doi: 10.1093/ndt/17.6.1037
377. Cupisti A, Gallieni M, Rizzo MA et al. Phosphate control in dialysis. Int J Nephrol Renovasc Dis 2013; 6: 193 - 205. doi: 10.2147/IJNRD.S35632
378. Sampaio MS, Ruzany F, Dorigo DM, Suassuna JH. Phosphate mass removal during hemodialysis: a comparison between eKT/V-matched conventional and extended dialysis. Am J Nephrol 2012; 36(2): 121 - 6. doi: 10.1159/000338675
379. T, Ponikvar R, J, J. Phosphate Removal During Long Nocturnal Hemodialysis/Hemodiafiltration: A Study With Total Dialysate Collection. Ther Apher Dial 2016; 20(3): 267 - 71. doi: 10.1111/1744-9987.12435
380. Ayus JC, Mizani MR, Achinger SG et al. Effects of short daily versus conventional hemodialysis on left ventricular hypertrophy and inflammatory markers: a prospective, controlled study. J Am Soc Nephrol 2005; 16(9): 2778 - 88. doi: 10.1681/ASN.2005040392
381. Susantitaphong P, Siribamrungwong M, Jaber BL. Convective therapies versus low-flux hemodialysis for chronic kidney failure: a meta-analysis of randomized controlled trials. Nephrol Dial Transplant 2013; 28(11): 2859 - 74. doi: 10.1093/ndt/gft396
382. INDEPENDENT Study Investigators. Mortality in kidney disease patients treated with phosphate binders: a randomized study. Clin J Am Soc Nephrol 2012; 7(3): 487 - 93. doi: 10.2215/CJN.03820411
383. Ruospo M, Palmer SC, Natale P et al. Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD). Cochrane Database Syst Rev 2018; 8(8): CD006023. doi: 10.1002/14651858.CD006023.pub3
384. Habbous S, Przech S, Acedillo R et al. The efficacy and safety of sevelamer and lanthanum versus calcium-containing and iron-based binders in treating hyperphosphatemia in patients with chronic kidney disease: a systematic review and meta-analysis. Nephrol Dial Transplant 2017, 32(1): 111 - 125. doi: 10.1093/ndt/gfw312
385. Jamal SA, Vandermeer B, Raggi P et al. Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet 2013; 382(9900): 1268 - 77. doi: 10.1016/S0140-6736(13)60897-1
386. Sekercioglu N, Thabane L, JP et al. Comparative Effectiveness of Phosphate Binders in Patients with Chronic Kidney Disease: A Systematic Review and Network Meta-Analysis. PLoS One 2016; 11(6): e0156891. doi: 10.1371/journal.pone.0156891
387. Patel L, Bernard LM, Elder GJ. Sevelamer Versus Calcium-Based Binders for Treatment of Hyperphosphatemia in CKD: A Meta-Analysis of Randomized Controlled Trials. Clin J Am Soc Nephrol 2016; 11(2): 232 - 44. doi: 10.2215/CJN.06800615
388. Hill KM, Martin BR, Wastney ME et al. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3 - 4 chronic kidney disease. Kidney Int 2013; 83(5): 959 - 66. doi: 10.1038/ki.2012.403
389. Wang F, Lu X, Zhang J et al. Effect of Lanthanum Carbonate on All-Cause Mortality in Patients Receiving Maintenance Hemodialysis: a Meta-Analysis of Randomized Controlled Trials. Kidney Blood Press Res 2018; 43(2): 536 - 544. doi: 10.1159/000488700
390. Sekercioglu N, Angeliki Veroniki A, Thabane L et al. Effects of different phosphate lowering strategies in patients with CKD on laboratory outcomes: A systematic review and NMA. PLoS One 2017; 12(3): e0171028. doi: 10.1371/journal.pone.0171028
391. Geng S, Kuang Z, Peissig PL et al. Parathyroid hormone independently predicts fracture, vascular events, and death in patients with stage 3 and 4 chronic kidney disease. Osteoporos Int 2019; 30(10): 2019 - 2025. doi: 10.1007/s00198-019-05033-3
392. Shardlow A, McIntyre NJ, Fluck RJ et al. Associations of fibroblast growth factor 23, vitamin D and parathyroid hormone with 5-year outcomes in a prospective primary care cohort of people with chronic kidney disease stage 3. BMJ Open 2017; 7(8): e016528. doi: 10.1136/bmjopen-2017-016528
393. Seiler-Mussler S, Limbach AS, Emrich IE et al. Association of Nonoxidized Parathyroid Hormone with Cardiovascular and Kidney Disease Outcomes in Chronic Kidney Disease. Clin J Am Soc Nephrol 2018; 13(4): 569 - 576. doi: 10.2215/CJN.06620617
394. Tentori F, Wang M, Bieber BA et al. Recent changes in therapeutic approaches and association with outcomes among patients with secondary hyperparathyroidism on chronic hemodialysis: the DOPPS study. Clin J Am Soc Nephrol 2015; 10(1): 98 - 109. doi: 10.2215/CJN.12941213
395. Tentori F, Zepel L, Fuller DS et al. The DOPPS Practice Monitor for US Dialysis Care: PTH Levels and Management of Mineral and Bone Disorder in US Hemodialysis Patients. Am J Kidney Dis 2015; 66(3): 536 - 9. doi: 10.1053/j.ajkd.2015.07.011
396. Kandula P, Dobre M, Schold JD et al. Vitamin D supplementation in chronic kidney disease: a systematic review and meta-analysis of observational studies and randomized controlled trials. Clin J Am Soc Nephrol 2011; 6(1): 50 - 62. doi: 10.2215/CJN.03940510
397. Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ 2014; 348: g2035. doi: 10.1136/bmj.g2035
398. Tripkovic L, Lambert H, Hart K et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr 2012; 95(6): 1357 - 64. doi: 10.3945/ajcn.111.031070
399. Cardoso MP, Pereira LAL. Native vitamin D in pre-dialysis chronic kidney disease. Nefrologia 2019; 39(1): 18 - 28. doi: 10.1016/j.nefro.2018.07.004
400. Ennis JL, Worcester EM, Coe FL, Sprague SM. Current recommended 25-hydroxyvitamin D targets for chronic kidney disease management may be too low. J Nephrol 2016; 29(1): 63 - 70. doi: 10.1007/s40620-015-0186-0
401. Hu X, Shang J, Yuan W et al. Effects of paricalcitol on cardiovascular outcomes and renal function in patients with chronic kidney disease: A meta-analysis. Herz 2018; 43(6): 518 - 528. doi: 10.1007/s00059-017-4605-y
402. Liu Y, Liu LY, Jia Y et al. Efficacy and safety of paricalcitol in patients undergoing hemodialysis: a meta-analysis. Drug Des Devel Ther 2019; 13: 999 - 1009. doi: 10.2147/DDDT.S176257
403. Zhang T, Ju H, Chen H, Wen W. Comparison of Paricalcitol and Calcitriol in Dialysis Patients With Secondary Hyperparathyroidism: A Meta-Analysis of Randomized Controlled Studies. Ther Apher Dial 2019; 23(1): 73 - 79. doi: 10.1111/1744-9987.12760
404. Cai P, Tang X, Qin W et al. Comparison between paricalcitol and active non-selective vitamin D receptor activator for secondary hyperparathyroidism in chronic kidney disease: a systematic review and meta-analysis of randomized controlled trials. Int Urol Nephrol 2016; 48(4): 571 - 84. doi: 10.1007/s11255-015-1195-6
405. Xie Y, Su P, Sun Y et al. Comparative efficacy and safety of paricalcitol versus vitamin D receptor activators for dialysis patients with secondary hyperparathyroidism: a meta-analysis of randomized controlled trials. BMC Nephrol 2017; 18(1): 272. doi: 10.1186/s12882-017-0691-6
406. Ye H, Ye P, Zhang Z et al. A Bayesian network analysis on comparative efficacy of treatment strategies for dialysis patients with secondary hyperparathyroidism. Exp Ther Med 2019; 17(1): 531 - 540. doi: 10.3892/etm.2018.6906
407. Zheng Z, Shi H, Jia J et al. Vitamin D supplementation and mortality risk in chronic kidney disease: a meta-analysis of 20 observational studies. BMC Nephrol 2013; 14: 199. doi: 10.1186/1471-2369-14-199
408. Jin L, Zhou J, Shao F, Yang F. Long-term effects on PTH and mineral metabolism of 1.25 versus 1.75 mmol/L dialysate calcium in peritoneal dialysis patients: a meta-analysis. BMC Nephrol 2019; 20(1): 213. doi: 10.1186/s12882-019-1388-9
409. Ok E, Asci G, Bayraktaroglu S et al. Reduction of Dialysate Calcium Level Reduces Progression of Coronary Artery Calcification and Improves Low Bone Turnover in Patients on Hemodialysis. J Am Soc Nephrol 2016; 27(8): 2475 - 86. doi: 10.1681/ASN.2015030268
410. Spasovski G, Gelev S, Masin-Spasovska J et al. Improvement of bone and mineral parameters related to adynamic bone disease by diminishing dialysate calcium. Bone 2007; 41(4): 698 - 703. doi: 10.1016/j.bone.2007.06.014
411. Yoshikawa M, Takase O, Tsujimura T et al. Long-term effects of low calcium dialysates on the serum calcium levels during maintenance hemodialysis treatments: A systematic review and meta-analysis. Sci Rep 2018; 8(1): 5310. doi: 10.1038/s41598-018-23658-y
412. Palmer SC, Nistor I, Craig JC et al. Cinacalcet in patients with chronic kidney disease: a cumulative meta-analysis of randomized controlled trials. PLoS Med 2013; 10(4): e1001436. doi: 10.1371/journal.pmed.1001436
413. Ballinger AE, Palmer SC, Nistor I et al. Calcimimetics for secondary hyperparathyroidism in chronic kidney disease patients. Cochrane Database Syst Rev 2014; (12): CD006254. doi: 10.1002/14651858.CD006254.pub2
414. Ni LH, Yuan C, Song KY et al. Efficacy and safety of cinacalcet and active vitamin D in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease: a network meta-analysis. Ann Transl Med 2019; 7(14): 322. doi: 10.21037/atm.2019.05.84
415. Xu J, Yang Y, Ma L et al. Cinacalcet plus vitamin D versus vitamin D alone for the treatment of secondary hyperparathyroidism in patients undergoing dialysis: a meta-analysis of randomized controlled trials. Int Urol Nephrol 2019; 51(11): 2027 - 2036. doi: 10.1007/s11255-019-02271-6
416. Block GA, Bushinsky DA, Cunningham J et al. Effect of Etelcalcetide vs Placebo on Serum Parathyroid Hormone in Patients Receiving Hemodialysis With Secondary Hyperparathyroidism: Two Randomized Clinical Trials. JAMA 2017; 317(2): 146 - 155. doi: 10.1001/jama.2016.19456
417. Chen L, Wang K, Yu S et al. Long-term mortality after parathyroidectomy among chronic kidney disease patients with secondary hyperparathyroidism: a systematic review and meta-analysis. Ren Fail 2016; 38(7): 1050 - 8. doi: 10.1080/0886022X.2016.1184924
418. Apetrii M, Goldsmith D, Nistor I et al. Impact of surgical parathyroidectomy on chronic kidney disease-mineral and bone disorder (CKD-MBD) - A systematic review and meta-analysis. PLoS One 2017; 12(11): e0187025. doi: 10.1371/journal.pone.0187025
419. Schneider R, Kolios G, Koch BM et al. An economic comparison of surgical and medical therapy in patients with secondary hyperparathyroidism--the German perspective. Surgery 2010; 148(6): 1091 - 9. doi: 10.1016/j.surg.2010.09.009
420. Narayan R, Perkins RM, Berbano EP et al. Parathyroidectomy versus cinacalcet hydrochloride-based medical therapy in the management of hyperparathyroidism in ESRD: a cost utility analysis. Am J Kidney Dis 2007; 49(6): 801 - 13. doi: 10.1053/j.ajkd.2007.03.009
421. Hou J, Shan H, Zhang Y et al. Network meta-analysis of surgical treatment for secondary hyperparathyroidism. Am J Otolaryngol 2020; 41(2): 102370. doi: 10.1016/j.amjoto.2019.102370
422. Liu ME, Qiu NC, Zha SL et al. To assess the effects of parathyroidectomy (TPTX versus TPTX+AT) for Secondary Hyperparathyroidism in chronic renal failure: A Systematic Review and Meta-Analysis. Int J Surg 2017; 44: 353 - 362. doi: 10.1016/j.ijsu.2017.06.029
423. Yuan Q, Liao Y, Zhou R et al. Subtotal parathyroidectomy versus total parathyroidectomy with autotransplantation for secondary hyperparathyroidism: an updated systematic review and meta-analysis. Langenbecks Arch Surg 2019; 404(6): 669 - 679. doi: 10.1007/s00423-019-01809-7
424. Korevaar JC, Feith GW, Dekker FW et al. Effect of starting with hemodialysis compared with peritoneal dialysis in patients new on dialysis treatment: a randomized controlled trial. Kidney Int 2003; 64(6): 2222 - 8. doi: 10.1046/j.1523-1755.2003.00321.x
425. Devoe DJ, Wong B, James MT et al. Patient Education and Peritoneal Dialysis Modality Selection: A Systematic Review and Meta-analysis. Am J Kidney Dis 2016; 68(3): 422 - 33. doi: 10.1053/j.ajkd.2016.02.053
426. Garofalo C, Borrelli S, De Stefano T et al. Incremental dialysis in ESRD: systematic review and meta-analysis. J Nephrol 2019; 32(5): 823 - 836. doi: 10.1007/s40620-018-00577-9
427. Liem YS, Bosch JL, Hunink MG. Preference-based quality of life of patients on renal replacement therapy: a systematic review and meta-analysis. Value Health 2008; 11(4): 733 - 41. doi: 10.1111/j.1524-4733.2007.00308.x
428. Han SS, Park JY, Kang S et al. Dialysis Modality and Mortality in the Elderly: A Meta-Analysis. Clin J Am Soc Nephrol 2015; 10(6): 983 - 93. doi: 10.2215/CJN.05160514
429. Lozier MR, Sanchez AM, Lee JJ et al. Comparison of Cardiovascular Outcomes by Dialysis Modality: A Systematic Review and Meta-Analysis. Perit Dial Int 2019; 39(4): 306 - 314. doi: 10.3747/pdi.2018.00227
430. Boonpheng B, Thongprayoon C, Cheungpasitporn W. The comparison of risk of stroke in patients with peritoneal dialysis and hemodialysis: A systematic review and meta-analysis. J Evid Based Med 2018; 11(3): 158 - 168. doi: 10.1111/jebm.12315
431. Zazzeroni L, Pasquinelli G, Nanni E et al. Comparison of Quality of Life in Patients Undergoing Hemodialysis and Peritoneal Dialysis: a Systematic Review and Meta-Analysis. Kidney Blood Press Res 2017; 42(4): 717 - 727. doi: 10.1159/000484115
432. Ravani P, Palmer SC, Oliver MJ et al. Associations between hemodialysis access type and clinical outcomes: a systematic review. J Am Soc Nephrol 2013; 24(3): 465 - 73. doi: 10.1681/ASN.2012070643
433. Almasri J, Alsawas M, Mainou M et al. Outcomes of vascular access for hemodialysis: A systematic review and metaanalysis. J Vasc Surg 2016, 64(1): 236 - 43. doi: 10.1016/j.jvs.2016.01.053
434. Smart NA, Dieberg G, Ladhani M, Titus T. Early referral to specialist nephrology services for preventing the progression to end-stage kidney disease. Cochrane Database Syst Rev 2014; (6): CD007333. doi: 10.1002/14651858.CD007333.pub2
435. Добронравов В.А. Оптимальное и субоптимальное начало диализа в проспективных сравнительных когортных исследованиях: метаанализ Рабочей Группы, июнь 2020, неопубликованные данные
436. Mendelssohn DC, Curtis B, Yeates K et al. Suboptimal initiation of dialysis with and without early referral to a nephrologist. Nephrol Dial Transplant 2011; 26(9): 2959 - 65. doi: 10.1093/ndt/gfq843
437. Caro A, Olry de Labry Lima A et al. Optimal start in dialysis shows increased survival in patients with chronic kidney disease. PLoS One 2019; 14(7): e0219037. doi: 10.1371/journal.pone.0219037
438. Couchoud C, Moranne O, Frimat L et al. Associations between comorbidities, treatment choice and outcome in the elderly with end-stage renal disease. Nephrol Dial Transplant 2007; 22(11): 3246 - 3254. doi: 10.1093/ndt/gfm400
439. Gorriz JL, Sancho A, Pallardo LM et al. Prognostic significance of programmed dialysis in patients who initiate renal substitutive treatment. Multicenter study in Spain. Nefrologia 2002; 22(1): 49 - 59
440. Metcalfe W, Khan IH, Prescott GJ et al. Can we improve early mortality in patients receiving renal replacement therapy? Kidney Int 2000; 57(6): 2539 - 2545. doi: 10.1046/j.1523-1755.2000.00113.x
441. Descamps C, Labeeuw M, Trolliet P et al. Confounding factors for early death in incident end-stage renal disease patients: Role of emergency dialysis start. Hemodial Int 2011; 15(1): 23 - 9. doi: 10.1111/j.1542-4758.2010.00513.x
442. Michel A, Pladys A, Bayat S et al. Deleterious effects of dialysis emergency start, insights from the French REIN registry. BMC Nephrol 2018; 19(1): 233. doi: 10.1186/s12882-018-1036-9
443. Liu FX, Ghaffari A, Dhatt H et al. Economic evaluation of urgent-start peritoneal dialysis versus urgent-start hemodialysis in the United States. Medicine (Baltimore) 2014; 93(28): e293. doi: 10.1097/MD.0000000000000293
444. Mendelssohn DC, Malmberg C, Hamandi B. An integrated review of "unplanned" dialysis initiation: refraining the terminology to "suboptimal" initiation. BMC Nephrol 2009; 10: 22. doi: 10.1186/1471-2369-10-22
445. Cooper BA, Branley P, Bulfone L et al. A randomized, controlled trial of early versus late initiation of dialysis. N Engl J Med 2010; 363(7): 609 - 19. doi: 10.1056/NEJMoal000552
446. Susantitaphong P, Altamimi S, Ashkar M et al. GFR at initiation of dialysis and mortality in CKD: a meta-analysis. Am J Kidney Dis 2012; 59(6): 829 - 40. doi: 10.1053/j.ajkd.2012.01.015
447. Pan Y, Xu XD, Guo LL et al. Association of early versus late initiation of dialysis with mortality: systematic review and meta-analysis. Nephron Clin Pract 2012; 120(3): c121 - 31. doi: 10.1159/000337572
448. Zhao Y, Pei X, Zhao W. Timing of Dialysis Initiation and Mortality Risk in Chronic Kidney Disease: A Meta-Analysis. Ther Apher Dial 2018; 22(6): 600 - 608. doi: 10.1111/1744-9987.12721
449. Xieyi G, Xiaohong T, Xiaofang W, Zi L. Urgent-start peritoneal dialysis in chronic kidney disease patients: A systematic review and meta-analysis compared with planned peritoneal dialysis and with urgent-start hemodialysis. Perit Dial Int 2020; 896860820918710. doi: 10.1177/0896860820918710
450. Brown RS, Patibandla BK, Goldfarb-Rumyantzev AS. The Survival Benefit of "Fistula First, Catheter Last" in Hemodialysis Is Primarily Due to Patient Factors. J Am Soc Nephrol 2017; 28(2): 645 - 652. doi: 10.1681/ASN.2016010019
451. Murad MH, Elamin MB, Sidawy AN et al. Autogenous versus prosthetic vascular access for hemodialysis: a systematic review and meta-analysis. J Vasc Surg 2008; 48(5 Suppl): 34S - 47S. doi: 10.1016/j.jvs.2008.08.044
452. Georgiadis GS, Charalampidis DG, Argyriou C et al. The Necessity for Routine Pre-operative Ultrasound Mapping Before Arteriovenous Fistula Creation: A Meta-analysis. Eur J Vasc Endovasc Surg 2015; 49(5): 600 - 5. doi: 10.1016/j.ejvs.2015.01.012
453. Aragoncillo Sauco I, Ligero Ramos JM, Vega A et al. Vascular access clinic results before and after implementing a multidisciplinary approach adding routine Doppler ultrasound. Nefrologia 018; 38(6): 616 - 621. doi: 10.1016/j.nefro.2018.04.003
454. Kensinger C, Brownie E, Bream P Jr, Moore D. Multidisciplinary team approach to end-stage dialysis access patients. J Surg Res 2015; 199(1): 259 - 65. doi: 10.1016/j.jss.2015.04.088
455. Bylsma LC, Gage SM, Reichert H et al. Arteriovenous Fistulae for Haemodialysis: A Systematic Review and Meta-analysis of Efficacy and Safety Outcomes. Eur J Vasc Endovasc Surg 2017; 54(4): 513 - 522. doi: 10.1016/j.ejvs.2017.06.024
456. Harms JC, Rangarajan S, Young CJ et al. Outcomes of arteriovenous fistulas and grafts with or without intervention before successful use. J Vasc Surg 2016; 64(1): 155 - 62. doi: 10.1016/j.jvs.2016.02.033
457. Lok CE, Sontrop JM, Tomlinson G et al. Cumulative patency of contemporary fistulas versus grafts (2000 - 2010). Clin J Am Soc Nephrol 2013; 8(5): 810 - 8. doi: 10.2215/CJN.00730112
458. Maya ID, O"Neal JC, Young CJ et al. Outcomes of brachiocephalic fistulas, transposed brachiobasilic fistulas, and upper arm grafts. Clin J Am Soc Nephrol 2009; 4(1): 86 - 92. doi: 10.2215/CJN.02910608
459. Begin V, Ethier J, Dumont M, Leblanc M. Prospective evaluation of the intra-access flow of recently created native arteriovenous fistulae. Am J Kidney Dis 2002; 40(6): 1277 - 82. doi: 10.1053/ajkd.2002.36898
460. Basile C, Lomonte C, Vernaglione L et al. The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol Dial Transplant 2008; 23(1): 282 - 7. doi: 10.1093/ndt/gfm549
461. Al-Ghonaim M, Manns BJ, Hirsch DJ et al. Relation between access blood flow and mortality in chronic hemodialysis patients. Clin J Am Soc Nephrol 2008; 3(2): 387 - 91. doi: 10.2215/CJN.03000707
462. Saleh MA, El Kilany WM, Keddis VW, El Said TW. Effect of high flow arteriovenous fistula on cardiac function in hemodialysis patients. Egypt Heart J 2018; 70(4): 331 - 341. doi: 10.1016/j.ehj.2018.10.007
463. Palmer SC, Di Micco L, Razavian M et al. Antiplatelet therapy to prevent hemodialysis vascular access failure: systematic review and meta-analysis. Am J Kidney Dis 2013; 61(1): 112 - 22. doi: 10.1053/j.ajkd.2012.08.031
464. Dember LM, Beck GJ, Allon M et al. Effect of clopidogrel on early failure of arteriovenous fistulas for hemodialysis: a randomized controlled trial. JAMA 2008; 299(18): 2164 - 71. doi: 10.1001/jama.299.18.2164
465. Tanner NC, Da Silva A. Medical adjuvant treatment to increase patency of arteriovenous fistulae and grafts. Cochrane Database Syst Rev 2015; 2015(7): CD002786. doi: 10.1002/14651858.CD002786.pub3
466. Rayner HC, Pisoni RL, Gillespie BW et al. Creation, cannulation and survival of arteriovenous fistulae: data from the Dialysis Outcomes and Practice Patterns Study. Kidney Int 2003; 63(1): 323 - 30. doi: 10.1046/j.1523-1755.2003.00724.x
467. Saran R, Dykstra DM, Pisoni RL et al. Timing of first cannulation and vascular access failure in haemodialysis: an analysis of practice patterns at dialysis facilities in the DOPPS. Nephrol Dial Transplant 2004; 19(9): 2334 - 40. doi: 10.1093/ndt/gfh363
468. Ravani P, Brunori G, Mandolfo S et al. Cardiovascular comorbidity and late referral impact arteriovenous fistula survival: a prospective multicenter study. J Am Soc Nephrol 2004; 15(1): 204 - 9. doi: 10.1097/01.asn.0000103870.31606.90
469. Wilmink T, Hollingworth L, Stevenson T, Powers S. Is early cannulation of an arteriovenous fistula associated with early failure of the fistula? J Vasc Access 2017; 18(Suppl. 1): 92 - 97. doi: 10.5301/jva.5000674
470. Allon M, Imrey PB, Cheung AK et al. Relationships Between Clinical Processes and Arteriovenous Fistula Cannulation and Maturation: A Multicenter Prospective Cohort Study. Am J Kidney Dis 2018; 71(5): 677 - 689. doi: 10.1053/j.ajkd.2017.10.027
471. Wilmink T, Powers S, Hollingworth L, Stevenson T. Effect of first cannulation time and dialysis machine blood flows on survival of arteriovenous fistulas. Nephrol Dial Transplant 2018; 33(5): 841 - 846. doi: 10.1093/ndt/gfx278
472. Ferring M, Henderson J, Wilmink T. Accuracy of early postoperative clinical and ultrasound examination of arteriovenous fistulae to predict dialysis use. J Vasc Access 2014; 15(4): 291 - 7. doi: 10.5301/jva.5000210
473. Feldman L, Shani M, Mursi J et al. Effect of timing of the first cannulation on survival of arteriovenous hemodialysis grafts. Ther Apher Dial 2013; 17(1): 60 - 4. doi: 10.1111/j.1744-9987.2012.01134.x
474. Schild AF, Schuman ES, Noicely K et al. Early cannulation prosthetic graft (FlixeneTM) for arteriovenous access. J Vasc Access 2011; 12(3): 248 - 52. doi: 10.5301/jva.2011.6351
475. Hakaim AG, Scott TE. Durability of early prosthetic dialysis graft cannulation: results of a prospective, nonrandomized clinical trial. J Vasc Surg 1997; 25(6): 1002 - 5. doi: 10.1016/s0741-5214(97) 70123-x
476. Glickman MH, Burgess J, Cull D et al. Prospective multicenter study with a 1-year analysis of a new vascular graft used for early cannulation in patients undergoing hemodialysis. J Vasc Surg 2015; 62(2): 434 - 41. doi: 10.1016/j.jvs.2015.03.020
477. National Kidney Foundation. KDOQI Clinical Practice Guideline for Vascular Access: 2019 Update. Am J Kidney Dis 2020; 75(4 Suppl 2): S1 - S164. doi: 10.1053/j.ajkd.2019.12.001
478. Green LD, Lee DS, Kucey DS. A metaanalysis comparing surgical thrombectomy, mechanical thrombectomy, and pharmacomechanical thrombolysis for thrombosed dialysis grafts. J Vasc Surg 2002; 36(5): 939 - 45. doi: 10.1067/mva.2002.127524
479. Chan N, Wee I, Soong TK et al. A systematic review and meta-analysis of surgical versus endovascular thrombectomy of thrombosed arteriovenous grafts in hemodialysis patients. J Vasc Surg 2019; 69(6): 1976 - 1988. e7. doi: 10.1016/j.jvs.2018.10.102
480. Kuhan G, Antoniou GA, Nikam M et al. A meta-analysis of randomized trials comparing surgery versus endovascular therapy for thrombosed arteriovenous fistulas and grafts in hemodialysis. Cardiovasc Intervent Radiol 2013; 36(3): 699 - 705. doi: 10.1007/s00270-013-0564-8
481. Doelman C, Duijm LE, Liem YS et al. Stenosis detection in failing hemodialysis access fistulas and grafts: comparison of color Doppler ultrasonography, contrast-enhanced magnetic resonance angiography, and digital subtraction angiography. J Vasc Surg 2005; 42(4): 739 - 46. doi: 10.1016/j.jvs.2005.06.006
482. Tessitore N, Bedogna V, Gammaro L et al. Diagnostic accuracy of ultrasound dilution access blood flow measurement in detecting stenosis and predicting thrombosis in native forearm arteriovenous fistulae for hemodialysis. Am J Kidney Dis 2003; 42(2): 331 - 41. doi: 10.1016/s0272-6386(03)00659-0
483. Tonelli M, James M, Wiebe N et al. Ultrasound monitoring to detect access stenosis in hemodialysis patients: a systematic review. Am J Kidney Dis 2008; 51(4): 630 - 40. doi: 10.1053/j.ajkd.2007.11.025
484. Schwarz C, Mitterbauer C, Boczula M et al. Flow monitoring: performance characteristics of ultrasound dilution versus color Doppler ultrasound compared with fistulography. Am J Kidney Dis 2003; 42(3): 539 - 45. doi: 10.1016/s0272-6386(03)00786-8
485. Rooijens PP, Serafino GP, Vroegindeweij D et al. Multi-slice computed tomographic angiography for stenosis detection in forearm hemodialysis arteriovenous fistulas. J Vasc Access 2008; 9(4): 278 - 84
486. Karadeli E, Tarhan NC, Ulu EM et al. Evaluation of failing hemodialysis fistulas with multidetector CT angiography: comparison of different 3D planes. Eur J Radiol 2009; 69(1): 184 - 92. doi: 10.1016/j.ejrad.2007.09.014
487. Dimopoulou A, Raland H, B, Magnusson A. MDCT angiography with 3D image reconstructions in the evaluation of failing arteriovenous fistulas and grafts in hemodialysis patients. Acta Radiol 2011; 52(9): 935 - 42. doi: 10.1258/ar.2011.110255
488. Wasinrat J, Siriapisith T, Thamtorawat S, Tongdee T. 64-slice MDCT angiography of upper extremity in assessment of native hemodialysis access. Vasc Endovascular Surg 2011; 45(1): 69 - 77. doi: 10.1177/1538574410379922
489. Yan Wee IJ, Yap HY, Hsien Ts"ung LT et al. A systematic review and meta-analysis of drug-coated balloon versus conventional balloon angioplasty for dialysis access stenosis. J Vasc Surg 2019; 70(3): 970 - 979. e3. doi: 10.1016/j.jvs.2019.01.082
490. Hu H, Wu Z, Zhao J et al. Stent graft placement versus angioplasty for hemodialysis access failure: a meta-analysis. J Surg Res 2018; 226: 82 - 88. doi: 10.1016/j.jss.2018.01.030
491. Agarwal SK, Nadkami GN, Yacoub R et al. Comparison of Cutting Balloon Angioplasty and Percutaneous Balloon Angioplasty of Arteriovenous Fistula Stenosis: A Meta-Analysis and Systematic Review of Randomized Clinical Trials. J Interv Cardiol 2015; 28(3): 288 - 95. doi: 10.1111/joic.12202
492. Thomson P, Stirling C, Traynor J et al. A prospective observational study of catheter-related bacteraemia and thrombosis in a haemodialysis cohort: univariate and multivariate analyses of risk association. Nephrol Dial Transplant 2010; 25(5): 1596 - 604. doi: 10.1093/ndt/gfp667
493. Shingarev R, Barker-Finkel J, Allon M. Natural history of tunneled dialysis catheters placed for hemodialysis initiation. J Vasc Interv Radiol 2013; 24(9): 1289 - 94. doi: 10.1016/j.jvir.2013.05.034
494. Oliver MJ, Callery SM, Thorpe KE et al. Risk of bacteremia from temporary hemodialysis catheters by site of insertion and duration of use: a prospective study. Kidney Int 2000; 58(6): 2543 - 5. doi: 10.1046/j.1523-1755.2000.00439.x
495. Hryszko T, Brzosko S, Mazerska M et al. Risk factors of nontunneled noncuffed hemodialysis catheter malfunction. A prospective study. Nephron Clin Pract 2004; 96(2): c43 - 7. doi: 10.1159/000076398
496. Engstrom BI, Horvath JJ, Stewart JK et al. Tunneled internal jugular hemodialysis catheters: impact of laterality and tip position on catheter dysfunction and infection rates. J Vasc Interv Radiol 2013; 24(9): 1295 - 302. doi: 10.1016/j.jvir.2013.05.035
497. Schillinger F, Schillinger D, Montagnac R, Milcent T. Post catheterisation vein stenosis in haemodialysis: comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrol Dial Transplant 1991; 6(10): 722 - 4. doi: 10.1093/ndt/6.10.722
498. Schwab SJ, Quarles LD, Middleton JP et al. Hemodialysis-associated subclavian vein stenosis. Kidney Int 1988; 33(6): 1156 - 9. doi: 10.1038/ki.1988.124
499. Naumovic RT, Jovanovic DB, Djukanovic LJ. Temporary vascular catheters for hemodialysis: a 3-year prospective study. Int J Artif Organs 2004; 27(10): 848 - 54. doi: 10.1177/039139880402701006
500. Falk A. Use of the femoral vein as insertion site for tunneled hemodialysis catheters. J Vasc Interv Radiol 2007; 18(2): 217 - 25. doi: 10.1016/j.jvir.2006.12.001
501. Randolph AG, Cook DJ, Gonzales CA, Pribble CG. Ultrasound guidance for placement of central venous catheters: a metaanalysis of the literature. Crit Care Med 1996; 24(12): 2053 - 8. doi: 10.1097/00003246-199612000-00020
502. Hind D, Calvert N, McWilliams R et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ 2003; 327(7411): 361. doi: 10.1136/bmj.327.7411.361
503. Rabindranath KS, Kumar E, Shail R, Vaux E. Use of real-time ultrasound guidance for the placement of hemodialysis catheters: a systematic review and meta-analysis of randomized controlled trials. Am J Kidney Dis 2011; 58(6): 964 - 70. doi: 10.1053/j.ajkd.2011.07.025
504. American Society of Anesthesiologists Task Force on Central Venous Access. Practice guidelines for central venous access: a report by the American Society of Anesthesiologists Task Force on Central Venous Access. Anesthesiology 2012; 116(3): 539 - 73. doi: 10.1097/ALN.0b013e31823c9569
505. СанПиН 2.1.3.2630-10 "Санитарно-эпидемиологические требования к организациям, осуществляющим медицинскую деятельность" (с изменениями на 10 июня 2016 года)
506. Приказ Росстандарта от 31 марта 2015 года N 199-ст утвержден ГОСТ Р 52623.3-2015 "Технологии выполнения простых медицинских услуг. Манипуляции сестринского ухода"
507. Клинические рекомендации. Профилактика катетер-ассоциированных инфекций кровотока и уход за центральным венозным катетером (ЦВК), 2017 год. https://zdrav36.ru/files/fkr-2017-profilaktika-kateter-associirovannyh-infekcij-krovotoka.pdf
508. Polio V, D, Bucuvic EM et al. Alteplase vs. urokinase for occluded hemodialysis catheter: A randomized trial. Hemodial Int 2016; 20(3): 378 - 84. doi: 10.1111/hdi.12391
509. Al-Ali F, Hamdy AF, Hamad A et al. Safety and efficacy of taurolidine/urokinase versus taurolidine/heparin as a tunneled catheter lock solution in hemodialysis patients: a prospective, randomized, controlled study. Nephrol Dial Transplant 2018; 33(4): 619 - 626. doi: 10.1093/ndt/gfx187
510. Winnicki W, Herkner H, Lorenz M et al. Taurolidine-based catheter lock regimen significantly reduces overall costs, infection, and dysfunction rates of tunneled hemodialysis catheters. Kidney Int 2018; 93(3): 753 - 760. doi: 10.1016/j.kint.2017.06.026
511. Allon M. Dialysis catheter-related bacteremia: treatment and prophylaxis. Am J Kidney Dis 2004; 44(5): 779 - 91
512. Kumbar L, Yee J. Current Concepts in Hemodialysis Vascular Access Infections. Adv Chronic Kidney Dis 2019; 26(1): 16 - 22. doi: 10.1053/j.ackd.2018.10.005
513. Oderich GS, Treiman GS, Schneider P, Bhirangi K. Stent placement for treatment of central and peripheral venous obstruction: a long-term multi-institutional experience. J Vasc Surg 2000; 32(4): 760 - 9. doi: 10.1067/mva.2000.107988
514. Mickley V. Stent or bypass? Treatment results in benign central venous obstruction. Zentralbl Chir 2001; 126(6): 445 - 9. doi: 10.1055/s-2001-14764
515. Daminers R, de Haan MW, Planken NR et al. Central vein obstruction in hemodialysis patients: results of radiological and surgical intervention. Eur J Vasc Endovasc Surg 2003, 26(3) 317 - 21. doi: 10.1053/ejvs.2002.1943
516. Sprouse LR 2nd, Lesar CJ, Meier GH 3rd et al. Percutaneous treatment of symptomatic central venous stenosis. J Vasc Surg 2004; 39(3): 578 - 82. doi: 10.1016/j.jvs.2003.09.034
517. Bakken AM, Protack CD, Saad WE et al. Long-term outcomes of primary angioplasty and primary stenting of central venous stenosis in hemodialysis patients. J Vasc Surg 2007; 45(4): 776 - 83. doi: 10.1016/j.jvs.2006.12.046
518. Ozyer U, Harman A, Yildirim E et al. Long-term results of angioplasty and stent placement for treatment of central venous obstruction in 126 hemodialysis patients: a 10-year single-center experience. AJR Am J Roentgenol 2009; 193(6): 1672 - 9. doi: 10.2214/AJR.09.2654
519. Maya ID, Saddekni S, Allon M. Treatment of refractory central vein stenosis in hemodialysis patients with stents. Semin Dial 2007; 20(1): 78 - 82. doi: 10.1111/j.1525-139X.2007.00246.x
520. Kim YC, Won JY, Choi SY et al. Percutaneous treatment of central venous stenosis in hemodialysis patients: long-term outcomes. Cardiovasc Intervent Radiol 2009; 32(2): 271 - 8. doi: 10.1007/s00270-009-9511-0
521. Anaya-Ayala JE, Smolock CJ, Colvard BD et al. Efficacy of covered stent placement for central venous occlusive disease in hemodialysis patients. J Vasc Surg 2011; 54(3): 754 - 9. doi: 10.1016/j.jvs.2011.03.260
522. Kundu S, Modabber M, You JM et al. Use of PTFE stent grafts for hemodialysis-related central venous occlusions: intermediate-term results. Cardiovasc Intervent Radiol 2011; 34(5): 949 - 57. doi: 10.1007/s00270-010-0019-4
523. Quaretti P, Galli F, Moramarco LP et al. Stent Grafts Provided Superior Primary Patency for Central Venous Stenosis Treatment in Comparison with Angioplasty and Bare Metal Stent: A Retrospective Single Center Study on 70 Hemodialysis Patients. Vasc Endovascular Surg 2016; 50(4): 221 - 30. doi: 10.1177/1538574416639149
524. Ronald J, Davis B, Guevara CJ et al. Treatment of central venous in-stent restenosis with repeat stent deployment in hemodialysis patients. J Vasc Access 2017; 18(3): 214 - 219. doi: 10.5301/jva.5000705
525. Brown PA, Akbari A, Molnar AO et al. Factors Associated with Unplanned Dialysis Starts in Patients followed by Nephrologists: A Retropective Cohort Study. PLoS One 2015; 10(6): e0130080. doi: 10.1371/journal.pone.0130080
526. Hassan R, Akbari A, Brown PA et al. Risk Factors for Unplanned Dialysis Initiation: A Systematic Review of the Literature. Can J Kidney Health Dis 2019; 6: 2054358119831684. doi: 10.1177/2054358119831684
527. Buck J, Baker R, Cannaby AM et al. Why do patients known to renal services still undergo urgent dialysis initiation? A cross-sectional survey. Nephrol Dial Transplant 2007; 22(11): 3240 - 5. doi: 10.1093/ndt/gfm387
528. Mathew A, McLeggon JA, Mehta N et al. Mortality and Hospitalizations in Intensive Dialysis: A Systematic Review and Meta-Analysis. Can J Kidney Health Dis 2018; 5: 2054358117749531. doi: 10.1177/2054358117749531
529. Jansz TT, Noordzij M, Kramer A et al. Survival of patients treated with extended-hours haemodialysis in Europe: an analysis of the ERA-EDTA Registry. Nephrol Dial Transplant 2020; 35(3): 488 - 495. doi: 10.1093/ndt/gfz208
530. Greene T, Daugirdas J, Depner T et al. Association of achieved dialysis dose with mortality in the hemodialysis study: an example of "dose-targeting bias". J Am Soc Nephrol 2005; 16(11): 3371 - 80. doi: 10.1681/ASN.2005030321
531. Sridharan S, Vilar E, Davenport A et al. Indexing dialysis dose for gender, body size and physical activity: Impact on survival. PLoS One 2018; 13(9): e0203075. doi: 10.1371/journal.pone.0203075
532. Miller JE, Kovesdy CP, Nissenson AR et al. Association of hemodialysis treatment time and dose with mortality and the role of race and sex. Am J Kidney Dis 2010; 55(1): 100 - 12. doi: 10.1053/j.ajkd.2009.08.007
533. Eknoyan G, Beck GJ, Cheung AK et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med 2002; 347(25): 2010 - 9. doi: 10.1056/NEJMoa021583
534. European Best Practice Guidelines Expert Group on Hemodialysis, European Renal Association. Section II. Haemodialysis adequacy. Nephrol Dial Transplant 2002; 17 Suppl 7: 16 - 31
535. Ahrenholz P, Taborsky P, Bohling M et al. Determination of dialysis dose: a clinical comparison of methods. Blood Purif 2011; 32(4): 271 - 7. doi: 10.1159/000330340
536. Rabindranath KS, Strippoli GF, Roderick P et al. Comparison of hemodialysis, hemofiltration, and acetate-free biofiltration for ESRD: systematic review. Am J Kidney Dis 2005; 45(3): 437 - 47. doi: 10.1053/j.ajkd.2004.11.008
537. Nistor I, Palmer SC, Craig JC et al. Haemodiafiltration, haemofiltration and haemodialysis for end-stage kidney disease. Cochrane Database Syst Rev 2015; (5): CD006258. doi: 10.1002/14651858.CD006258.pub2
538. Liu Y, Zou W, Wu J et al. Comparison between incremental and thrice-weekly haemodialysis: Systematic review and meta-analysis. Nephrology (Carlton) 2019; 24(4): 438 - 444. doi: 10.1111/nep.13252
539. M, Teruel-Briones JL, Gomis A et al. Recovery of renal function in patients receiving haemodialysis treatment. Nefrologia 2012; 32(2): 166 - 71. doi: 10.3265/Nefrologia.pre2011.Dec.11194
540. Tattersall J. Residual renal function in incremental dialysis. Clin Kidney J 2018; 11 (6): 53 - 856. doi: 10.1093/ckj/sfy082
541. Vartia A. Residual renal function in incremental haemodialysis. Clin Kidney J 2018; 11 (6): 857 - 863. doi: 10.1093/ckj/sfy036
542. Daugirdas JT. Residual renal function in incremental haemodialysis. Clin Kidney J 2018; 11(6): 857 - 863. doi: 10.1093/ckj/sfy036
543. Obi Y, Rhee CM, Mathew AT et al. Residual Kidney Function Decline and Mortality in Incident Hemodialysis Patients. J Am Soc Nephrol 2016; 27(12): 3758 - 3768. doi: 10.1681/ASN.2015101142
544. Paniagua R, Amato D, Vonesh E et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol 2002; 13(5): 1307 - 20
545. Termorshuizen F, Korevaar JC, Dekker FW et al. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am J Kidney Dis 2003; 41(6): 1293 - 302
546. CANUSA Peritoneal Dialysis Study Group. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol 2001; 12(10): 2158 - 62
547. Lu W, Ren C, Han X et al. The protective effect of different dialysis types on residual renal function in patients with maintenance hemodialysis: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97(37): e12325. doi: 10.1097/MD.0000000000012325
548. Wang M, Obi Y, Streja E et al. Impact of residual kidney function on hemodialysis adequacy and patient survival. Nephrol Dial Transplant 2018; 33(10): 1823 - 1831. doi: 10.1093/ndt/gfy060
549. Daugirdas JT, Depner TA, Greene T et al. Standard Kt/Vurea: a method of calculation that includes effects of fluid removal and residual kidney clearance. Kidney Int 2010; 77(7): 637 - 44. doi: 10.1038/ki.2009.525
550. Casino FG, Basile C. A user-friendly tool for incremental haemodialysis prescription. Nephrol Dial Transplant 2018; 33(6): 1046 - 1053. doi: 10.1093/ndt/gfx343
551. Palmer SC, Rabindranath KS, Craig JC et al. High-flux versus low-flux membranes for end-stage kidney disease. Cochrane Database Syst Rev 2012; 2012(9): CD005016. doi: 10.1002/14651858.CD005016.pub2
552. Zhao F, Wang Z, Liu L, Wang S. The influence of mortality rate from membrane flux for end-stage renal disease: A meta-analysis. Nephrol Ther 2017; 13(1): 9 - 13. doi: 10.1016/j.nephro.2016.07.445
553. Li X, Xu H, Xiao XC et al. Prognostic effect of high-flux hemodialysis in patients with chronic kidney disease. Braz J Med Biol Res 2016; 49(1): e4708. doi: 10.1590/1414-431X20154708
554. Peters SA, Bots ML, Canaud B et al. Haemodiafiltration and mortality in end-stage kidney disease patients: a pooled individual participant data analysis from four randomized controlled trials. Nephrol Dial Transplant 2016; 31(6): 978 - 84. doi: 10.1093/ndt/gfv349
555. Masakane I, Kikuchi K, Kawanishi H. Evidence for the Clinical Advantages of Predilution On-Line Hemodiafiltration. Contrib Nephrol 2017; 189: 17 - 23. doi: 10.1159/000450635
556. Wang AY, Ninomiya T, Al-Kahwa A et al. Effect of hemodiafiltration or hemofiltration compared with hemodialysis on mortality and cardiovascular disease in chronic kidney failure: a systematic review and meta-analysis of randomized trials. Am J Kidney Dis 2014; 63(6): 968 - 78. doi: 10.1053/j.ajkd.2014.01.435
557. Liu S, Liu H, Wang Z et al. Effect of changing treatment to high-flux hemodialysis (HFHD) on mortality in patients with long-term low flux hemodialysis (LFHD): a propensity score matched cohort study. BMC Nephrol 2020; 21(1): 485. doi: 10.1186/s12882-020-02145-5
558. Nistor I, Palmer SC, Craig JC et al. Convective versus diffusive dialysis therapies for chronic kidney failure: an updated systematic review of randomized controlled trials. Am J Kidney Dis 2014; 63(6): 954 - 67. doi: 10.1053/j.ajkd.2013.12.004
559. Mostovaya IM, Blankestijn PJ, Bots ML et al. Clinical evidence on hemodiafiltration: a systematic review and a meta-analysis. Semin Dial 2014; 27(2): 119 - 27. doi: 10.1111/sdi.12200
560. Maduell F, Moreso F, Pons M et al. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol 2013; 24: 487 - 497. doi: 10.1681/ASN.2012080875
561. Grooteman MP, van den Dorpel MA, Bots ML et al. Effect of online hemodiafiltration on all-cause mortality and cardiovascular outcomes. J Am Soc Nephrol 2012; 23: 1087 - 1096. doi: 10.1681/ASN.2011121140
562. Ok E, Asci G, Toz H et al. Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-flux dialysis: results from the Turkish OL-HDF Study. Nephrol Dial Transplant 2013; 28: 192 - 202. doi: 10.1093/ndt/gfs407
563. Davenport A, Peters SA, Bots ML et al. Higher convection volume exchange with online hemodiafiltration is associated with survival advantage for dialysis patients: the effect of adjustment for body size. Kidney Int 2016; 89: 193 - 199. doi: 10.1038/ki.2015.264
564. Tsuchida K, Minakuchi J. Clinical benefits of predilution on-line hemodiafiltration. Blood Purif 2013; 35(Suppl 1): 18 - 22. doi: 10.1159/000346221
565. Macleod AM, Campbell M, Cody JD et al. Cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease. Cochrane Database Syst Rev 2005; (3): CD003234. doi: 10.1002/14651858.CD003234.pub2
566. Ashby D, Borman N, Burton J et al. Renal Association Clinical Practice Guideline on Haemodialysis. BMC Nephrol 2019; 20(1): 379. doi: 10.1186/s12882-019-1527-3
567. Tielemans C, Madhoun P, Lenaers M et al. Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int 1990; 38: 982 - 984
568. Martin-Navarroa J, Esterasb R, Castillo E et al. Reactions to synthetic membranes dialyzers: is there an increase in incidence? Kidney Blood Press Res 2019; 44(5): 907 - 914
569. Wilson B, Harwood L. Reaching Consensus on Outcomes for Successful Cannulation of an Arteriovenous Fistula: Patient and Healthcare Provider Perspectives. Nephrol Nurs, J 2018; 45: 327 - 336
570. Lazrak HH, , Elftouh N et al. Safety of low-molecular-weight heparin compared to unfractionated heparin in hemodialysis: a systematic review and meta-analysis. BMC Nephrol 2017; 18(1): 187. doi: 10.1186/s12882-017-0596-4
571. Lim W, Cook DJ, Crowther MA. Safety and efficacy of low molecular weight heparins for haemodialysis in patients with end-stage renal failure: a metaanalysis of randomised trials. J Am Soc Nephrol 2004; 15: 3192 - 206
572. Palamaner Subash Shantha G, Kumar AA, Sethi M et al. Efficacy and safety of low molecular weight heparin compared to unfractionated heparin for chronic outpatient hemodialysis in end stage renal disease: systematic review and meta-analysis. Peer J 2015; 3: e835
573. Davenport A. Optimization of heparin anticoagulation for hemodialysis. Hemodial Int 2011; 15 Suppl 1: S43 - 8. doi: 10.1111/j.1542-4758.2011.00601.x
574. Fischer KG. Essentials of anticoagulation in hemodialysis. Hemodial Int 2007; 11(2): 178 - 89. doi: 10.1111/j.1542-4758.2007.00166.x
575. Susantitaphong P, Riella C, Jaber BL. Effect of ultrapure dialysate on markers of inflammation, oxidative stress, nutrition and anemia parameters: a meta-analysis. Nephrol Dial Transplant 2013; 28(2): 438 - 46. doi: 10.1093/ndt/gfs514
576. Flythe JE, Kshirsagar AV, Falk RJ, Brunelli SM. Associations of Posthemodialysis Weights above and below Target Weight with All-Cause and Cardiovascular Mortality. Clin J Am Soc Nephrol 2015; 10(5): 808 - 16. doi: 10.2215/CJN.10201014
577. Sands JJ, Usvyat LA, Sullivan T et al. Intradialytic hypotension: frequency, sources of variation and correlation with clinical outcome. Hemodial Int 2014; 18(2): 415 - 22. doi: 10.1111/hdi.12138
578. Kraemer M, Rode C, Wizemann V. Detection limit of methods to assess fluid status changes in dialysis patients. Kidney Int 2006; 69: 1609 - 1620. doi: 10.1038/sj.ki.5000286
579. Piccoli A. Identification of operational clues to dry weight prescription in hemodialysis using bioimpedance vector analysis. The Italian Hemodialysis-Bioelectrical Impedance Analysis (HD-BIA) Study Group. Kidney Int 1998; 53: 1036 - 1043
580. Tao WW, Tao XM, Wang Y, Bi SH. Psycho-social and educational interventions for enhancing adherence to dialysis in adults with end-stage renal disease: A meta-analysis. J Clin Nurs 2020; 29(15 - 16): 2834 - 2848. doi: 10.1111/jocn.15301
581. Murali KM, Mullan J, Roodenrys S et al. Strategies to improve dietary, fluid, dialysis or medication adherence in patients with end stage kidney disease on dialysis: A systematic review and meta-analysis of randomized intervention trials. PLoS One 2019; 14(1): e0211479. doi: 10.1371/journal.pone.0211479
582. Huang M, Lv A, Wang J et al. Exercise Training and Outcomes in Hemodialysis Patients: Systematic Review and Meta-Analysis. Am J Nephrol 2019; 50(4): 240 - 254. doi: 10.1159/000502447
583. Scapini KB, Bohlke M, Moraes OA et al. Combined training is the most effective training modality to improve aerobic capacity and blood pressure control in people requiring haemodialysis for end-stage renal disease: systematic review and network metaanalysis. J Physiother 2019; 65(1): 4 - 15. doi: 10.1016/j.jphys.2018.11.008
584. Salhab N, Karavetian M, Kooman J et al. Effects of intradialytic aerobic exercise on hemodialysis patients: a systematic review and meta-analysis. J Nephrol 2019; 32(4): 549 - 566. doi: 10.1007/s40620-018-00565-z
585. Dobsak P, Homolka P, Svojanovsky J et al. Intra-dialytic electrostimulation of leg extensors may improve exercise tolerance and quality of life in hemodialyzed patients. Artif Organs 2012; 36(1): 71 - 8. doi: 10.1111/j.1525-1594.2011.01302.x
586. EBPG Expert Group on Peritoneal Dialysis. European best practice guidelines for peritoneal dialysis. 1 General guidelines. Nephrol Dial Transplant 2005; 20 Suppl 9: ix2. doi: 10.1093/ndt/gfi1115
587. Rabindranath KS, Adams J, Ali TZ et al. Continuous ambulatory peritoneal dialysis versus automated peritoneal dialysis for end-stage renal disease. Cochrane Database Syst Rev 2007(2): CD006515. doi: 10.1002/14651858.CD006515
588. Michels WM, van Dijk S, Verduijn M et al. Quality of life in automated and continuous ambulatory peritoneal dialysis. Perit Dial Int 2011; 31(2): 138 - 47. doi: 10.3747/pdi.2010.00063
589. Eloot S, Vanholder R, Dequidt C, Van Biesen W. Removal of Different Classes of Uremic Toxins in APD vs CAPD: A Randomized Cross-Over Study. Perit Dial Int 2015; 35(4): 436 - 42. doi: 10.3747/pdi.2013.00202
590. Johnson DW, Hawley CM, McDonald SP et al. Superior survival of high transporters treated with automated versus continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 2010; 25(6): 1973 - 9. doi: 10.1093/ndt/gfp780
591. Michels WM, Verduijn M, Grootendorst DC et al. Decline in residual renal function in automated compared with continuous ambulatory peritoneal dialysis. Clin J Am Soc Nephrol 2011; 6(3): 537 - 42. doi: 10.2215/CJN.00470110
592. M, C, Sans M et al. Compared decline of residual kidney function in patients treated with automated peritoneal dialysis and continuous ambulatory peritoneal dialysis: a multicenter study. Nephron Clin Pract 2014; 128(3-4): 352 - 60. doi: 10.1159/000368933
593. Ding L, Yang J, Li L, Yang Y. Effects of ACEIs and ARBs on the Residual Renal Function in Peritoneal Dialysis Patients: A Meta-Analysis of Randomized Controlled Trials. BiomedRes Int 2020; 2020: 6762029. doi: 10.1155/2020/6762029
594. Yoon HE, Kwon YJ, Shin SJ et al. Bioimpedance spectroscopy-guided fluid management in peritoneal dialysis patients with residual kidney function: A randomized controlled trial. Nephrology (Carlton) 2019; 24(12): 1279 - 1289. doi: 10.1111/nep.13571
595. Oh KH, Baek SH, Joo KW et al. Does Routine Bioimpedance-Guided Fluid Management Provide Additional Benefit to Non-Anuric Peritoneal Dialysis Patients? Results from COMPASS Clinical Trial. Perit Dial Int 2018; 38(2): 131 - 138. doi: 10.3747/pdi.2016.00241
596. Covic A, Ciumanghel Al, Siriopol D et al. Value of bioimpedance analysis estimated "dry weight" in maintenance dialysis patients: a systematic review and meta-analysis. Int Urol Nephrol 2017; 49(12): 2231 - 2245. doi: 10.1007/s11255-017-1698-4
597. Ng JK, Kwan BC, Chow KM et al. Asymptomatic fluid overload predicts survival and cardiovascular event in incident Chinese peritoneal dialysis patients. PLoS One 2018; 13(8): e0202203. doi: 10.1371/journal.pone.0202203
598. EBPG Expert Group on Peritoneal Dialysis. European best practice guidelines for peritoneal dialysis. 7 Adequacy of peritoneal dialysis. Nephrol Dial Transplant 2005; 20 Suppl 9: ix24 - ix27. doi: 10.1093/ndt/gfi1121
599. EAPOS Group. Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. J Am Soc Nephrol 2003; 14(11): 2948 - 57. doi: 10.1097/01.asn.0000092146.67909.e2
600. Davies SJ, Brown EA, Reigel W et al. What is the link between poor ultrafiltration and increased mortality in anuric patients on automated peritoneal dialysis? Analysis of data from EAPOS. Perit Dial Int 2006; 26(4): 458 - 65
601. Woodrow G, Fan SL, Reid C et al. Renal Association Clinical Practice Guideline on peritoneal dialysis in adults and children. BMC Nephrol 2017; 18(1): 333. doi: 10.1186/s12882-017-0687-2
602. Brimble KS, Walker M, Margetts PJ et al. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol 2006; 17(9): 2591 - 8. doi: 10.1681/ASN.2006030194
603. Krediet RT, Struijk DG. Peritoneal dialysis membrane evaluation in clinical practice. Contrib Nephrol 2012; 178: 232 - 237. doi: 10.1159/000337884
604. La Milia V, Virga G, Amici G et al. Functional assessment of the peritoneal membrane. J Nephrol 2013; 26 Suppl 21: 120 - 39. doi: 10.5301/JN.2013.11637
605. Wen Y, Guo Q, Yang X et al. High glucose concentrations in peritoneal dialysate are associated with all-cause and cardiovascular disease mortality in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 2015; 35(1): 70 - 7. doi: 10.3747/pdi.2013.00083
606. Selby NM, Fialova J, Burton JO, McIntyre CW. The haemodynamic and metabolic effects of hypertonic-glucose and amino-acid-based peritoneal dialysis fluids. Nephrol Dial Transplant 2007; 22(3): 870 - 9. doi: 10.1093/ndt/gfl654
607. Netherlands Ultrafiltration Failure Study Group. Analysis of the prevalence and causes of ultrafiltration failure during longterm peritoneal dialysis: a cross-sectional study. Perit Dial Int 2004; 24(6): 562 - 70
608. A, Hylander B, Moritz A et al. Increase of intra-abdominal fat in patients treated with continuous ambulatory peritoneal dialysis. Perit Dial Int 1998; 18(2): 166 - 71
609. Selby NM, Fonseca S, Hulme L et al. Hypertonic glucose-based peritoneal dialysate is associated with higher blood pressure and adverse haemodynamics as compared with icodextrin. Nephrol Dial Transplant 2005; 20(9): 1848 - 53. doi: 10.1093/ndt/gfh946
610. Marshall J, Jennings P, Scott A et al. Glycemic control in diabetic CAPD patients assessed by continuous glucose monitoring system (CGMS). Kidney Int 2003; 64(4) 1480 - 6. doi: 10.1046/j.1523-1755.2003.00209.x
611. Htay H, Johnson DW, Wiggins KJ et al. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev 2018; 10(10): CD007554. doi: 10.1002/14651858.CD007554.pub3
612. Qi H, Xu C, Yan H, Ma J. Comparison of icodextrin and glucose solutions for long dwell exchange in peritoneal dialysis: a meta-analysis of randomized controlled trials. Perit Dial Int 2011; 31(2): 179 - 88. doi: 10.3747/pdi.2009.00264
613. Goossen K, Becker M, Marshall MR et al. Icodextrin Versus Glucose Solutions for the Once-Daily Long Dwell in Peritoneal Dialysis: An Enriched Systematic Review and Meta-analysis of Randomized Controlled Trials. Am J Kidney Dis 2020; 75(6): 830 - 846. doi: 10.1053/j.ajkd.2019.10.004
614. Asola M, Virtanen K, K et al. Amino-acid-based peritoneal dialysis solution improves amino-acid transport into skeletal muscle. Kidney Int Suppl 2008; (108): S131 - 6. doi: 10.1038/sj.ki.5002614
615. Plum J, Erren C, Fieseler C et al. An amino acid-based peritoneal dialysis fluid buffered with bicarbonate versus glucose/bicarbonate and glucose/lactate solutions: an intraindividual randomized study. Perit Dial Int 1999; 19(5): 418 - 28
616. Jones M, Hagen T, Boyle CA et al. Treatment of malnutrition with 1.1% amino acid peritoneal dialysis solution: results of a multicenter outpatient study. Am J Kidney Dis 1998; 32(5): 761 - 9. doi: 10.1016/s0272-6386(98)70131-3
617. Li FK, Chan LY, Woo JC et al. A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD. Am J Kidney Dis 2003; 42(1): 173 - 83. doi: 10.1016/s0272-6386(03)00421-9
618. Tjiong HL, van den Berg JW, Wattimena JL et al. Dialysate as food: combined amino acid and glucose dialysate improves protein anabolism in renal failure patients on automated peritoneal dialysis. J Am Soc Nephrol 2005; 16(5): 1486 - 93. doi: 10.1681/ASN.2004050402
619. Wang J, Zhu N, Yuan W. Effect of neutral pH and low-glucose degradation product-containing peritoneal dialysis solution on residual renal function in peritoneal dialysis patients: a meta-analysis. Nephron 2015; 129(3): 155 - 63. doi: 10.1159/000368235
620. Yohanna S, Alkatheeri AM, Brimble SK et al. Effect of Neutral-pH, Low-Glucose Degradation Product Peritoneal Dialysis Solutions on Residual Renal Function, Urine Volume, and Ultrafiltration: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol 2015; 10(8): 1380 - 8. doi: 10.2215/CJN.05410514
621. EBPG Expert Group on Peritoneal Dialysis. European best practice guidelines for peritoneal dialysis. 3 Peritoneal access. Nephrol Dial Transplant 2005; 20 Suppl 9: ix8 - ix12. doi: 10.1093/ndt/gfi1117
622. Gadallah MF, Pervez A, el-Shahawy MA et al. Peritoneoscopic versus surgical placement of peritoneal dialysis catheters: a prospective randomized study on outcome. Am J Kidney Dis 1999; 33(1): 118 - 22. doi: 10.1016/s0272-6386(99)70266-0
623. Qiao Q, Zhou L, Hu K et al. Laparoscopic versus traditional peritoneal dialysis catheter insertion: a meta analysis. Ren Fail 2016; 38(5): 838 - 48. doi: 10.3109/0886022X.2015.1077313
624. Lo WK, Ho YW, Li CS et al. Effect of Kt/V on survival and clinical outcome in CAPD patients in a randomized prospective study. Kidney Int 2003; 64(2): 649 - 56. doi: 10.1046/j.1523-1755.2003.00098.x
625. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. J Am Soc Nephrol 1996; 7(2): 198 - 207
626. Jansen MA, Termorshuizen F, Korevaar JC et al. Predictors of survival in anuric peritoneal dialysis patients. Kidney Int 2005; 68(3): 1199 - 205. doi: 10.1111/j.1523-1755.2005.00512.x
627. Szeto CC, Wong TY, Chow KM et al. Impact of dialysis adequacy on the mortality and morbidity of anuric Chinese patients receiving continuous ambulatory peritoneal dialysis. J Am Soc Nephrol 2001; 12(2): 355 - 60
628. Fried L, Hebah N, Finkelstein F, Piraino B. Association of Kt/V and creatinine clearance with outcomes in anuric peritoneal dialysis patients. Am J Kidney Dis 2008; 52: 1122 - 1130
629. Lo WK, Lui SL, Chan TM et al. Minimal and optimal peritoneal Kt/V targets: results of an anuric peritoneal dialysis patient"s survival analysis. Kidney Int 2005; 67(5): 2032 - 8. doi: 10.1111/j.1523-1755.2005.00305.x
630. Kim DJ, Do JH, Huh WS et al. Dissociation between clearances of small and middle molecules in incremental peritoneal dialysis. Perit Dial Int 2001; 21: 462 - 466
631. Piraino B, Bemardini J, Brown E et al. ISPD position statement on reducing the risks of peritoneal dialysis-related infections. Perit Dial Int 2011; 31 (6): 614 - 30. doi: 10.3747/pdi.2011.00057
632. Daly CD, Campbell MK, MacLeod AM et al. Do the Y-set and double-bag systems reduce the incidence of CAPD peritonitis? A systematic review of randomized controlled trials. Nephrol Dial Transplant 2001; 16(2): 341 - 7. doi: 10.1093/ndt/16.2.341
633. Daly C, Cody JD, Khan I et al. Double bag or Y-set versus standard transfer systems for continuous ambulatory peritoneal dialysis in end-stage kidney disease. Cochrane Database Syst Rev 2014; 2014(8): CD003078. doi: 10.1002/14651858.CD003078.pub2
634. Strippoli GF, Tong A, Johnson D et al. Catheter-related interventions to prevent peritonitis in peritoneal dialysis: A systematic review of randomized, controlled trials. J Am Soc Nephrol 2004; 15: 2735 - 2746
635. Bernardini J, Piraino B, Holley J et al. A randomized trial of Staphylococcus aureus prophylaxis in peritoneal dialysis patients: mupirocin calcium ointment 2% applied to the exit site versus cyclic oral rifampin. Am J Kidney Dis 1996; 27(5): 695 - 700. doi: 10.1016/s0272-6386(96)90105-5
636. Bernardini J, Bender F, Florio T et al. Randomized, double-blind trial of antibiotic exit site cream for prevention of exit site infection in peritoneal dialysis patients. J Am Soc Nephrol 2005; 16(2): 539 - 45. doi: 10.1681/ASN.2004090773
637. Campbell D, Mudge DW, Craig JC et al. Antimicrobial agents for preventing peritonitis in peritoneal dialysis patients. Cochrane Database Syst Rev 2017; 4(4): CD004679. doi: 10.1002/14651858.CD004679.pub3
638. Grothe C, Taminato M, Belasco A et al. Prophylactic treatment of chronic renal disease in patients undergoing peritoneal dialysis and colonized by Staphylococcus aureus: a systematic review and meta-analysis. BMC Nephrol 2016; 17(1): 115. doi: 10.1186/s12882-016-0329-0
639. Tsai CC, Yang PS, Liu CL et al. Comparison of topical mupirocin and gentamicin in the prevention of peritoneal dialysis-related infections: A systematic review and meta-analysis. Am J Surg 2018; 215(1): 179 - 185. doi: 10.1016/j.amjsurg.2017.03.005
640. Xu G, Tu W, Xu C. Mupirocin for preventing exit-site infection and peritonitis in patients undergoing peritoneal dialysis. Nephrol Dial Transplant 2010; 25(2): 587 - 92. doi: 10.1093/ndt/gfp411
641. Piraino B. Staphylococcus aureus infections in dialysis patients: focus on prevention. ASAIO J 2000; 46(6): S13 - 7. doi: 10.1097/00002480-200011000-00031
642. Li PK, Szeto CC, Piraino B et al. Peritoneal dialysis-related infections recommendations: 2010 update. Perit Dial Int 2010; 30(4): 393 - 423. doi: 10.3747/pdi.2010.00049
643. Li PK, Szeto CC, Piraino B et al. ISPD peritonitis recommendations: 2016 update on prevention and treatment. Perit Dial Int 2016; 36: 481 - 508
644. Barretti P, Doles JV, Pinotti DG, El Dib R. Efficacy of antibiotic therapy for peritoneal dialysis-associated peritonitis: a proportional meta-analysis. BMC Infect Dis 2014; 14: 445. doi: 10.1186/1471-2334-14-445
645. Ballinger AE, Palmer SC, Wiggins KJ et al. Treatment for peritoneal dialysis-associated peritonitis. Cochrane Database Syst Rev 2014; (4): CD005284. doi: 10.1002/14651858.CD005284.pub3
646. Chang TI, Kim HW, Park JT et al. Early catheter removal improves patient survival in peritoneal dialysis patients with fungal peritonitis: results of ninety-four episodes of fungal peritonitis at a single center. Perit Dial Int 2011; 31(1): 60 - 6. doi: 10.3747/pdi.2009.00057
647. Basturk T, Koc Y, Unsal A et al. Fungal peritonitis in peritoneal dialysis: a 10 year retrospective analysis in a single center. Eur Rev Med Pharmacol Sci 2012; 16(12): 1696 - 700
648. Wang AY, Yu AW, Li PK et al. Factors predicting outcome of fungal peritonitis in peritoneal dialysis: analysis of a 9-year experience of fungal peritonitis in a single center. Am J Kidney Dis 2000; 36(6): 1183 - 92. doi: 10.1053/ajkd.2000.19833
649. Miles R, Hawley CM, McDonald SP et al. Predictors and outcomes of fungal peritonitis in peritoneal dialysis patients. Kidney Int 2009; 76(6): 622 - 8. doi: 10.1038/ki.2009.202
650. Nadeau-Fredette AC, Bargman JM. Characteristics and outcomes of fungal peritonitis in a modern North American cohort. Perit Dial Int 2015; 35(1): 78 - 84. doi: 10.3747/pdi.2013.00179
651. ONTARGET Investigators. Population-Attributable Fractions of Modifiable Lifestyle Factors for CKD and Mortality in Individuals With Type 2 Diabetes: A Cohort Study. Am J Kidney Dis 2016; 68(1): 29 - 40. doi: 10.1053/j.ajkd.2015.12.019
652. Smart N, Steele M. Exercise training in haemodialysis patients: a systematic review and meta-analysis. Nephrology (Carlton) 2011; 16(7): 626 - 32. doi: 10.1111/j.1440-1797.2011.01471.x
653. Greenwood SA, Lindup H, Taylor K et al. Evaluation of a pragmatic exercise rehabilitation programme in chronic kidney disease. Nephrol Dial Transplant 2012; 27 Suppl 3: iii126-34. doi: 10.1093/ndt/gfs272
654. Tentori F, Elder SJ, Thumma J et al. Physical exercise among participants in the Dialysis Outcomes and Practice Patterns Study (DOPPS): correlates and associated outcomes. Nephrol Dial Transplant 2010; 25(9): 3050 - 62. doi: 10.1093/ndt/gfq138
655. Kurella Tamura M, Covinsky KE, Chertow GM et al. Functional status of elderly adults before and after initiation of dialysis. N Engl J Med 2009; 361(16): 1539 - 47. doi: 10.1056/NEJMoa0904655
656. McIntyre CW, Selby NM, Sigrist M et al. Patients receiving maintenance dialysis have more severe functionally significant skeletal muscle wasting than patients with dialysis-independent chronic kidney disease. Nephrol Dial Transplant 2006; 21(8): 2210 - 6. doi: 10.1093/ndt/gfl064
657. American College of Sports Medicine; American Heart Association. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 2007; 116(9): 1094 - 105. doi: 10.1161/CIRCULATIONAHA.107.185650
658. Kosmadakis GC, Bevington A, Smith AC et al. Physical exercise in patients with severe kidney disease. Nephron Clin Pract 2010; 115(1): c7 - c16. doi: 10.1159/000286344
659. Intiso D, Di Rienzo F, Russo M et al. Rehabilitation strategy in the elderly. J Nephrol 2012; 25 Suppl 19: S90 - 5. doi: 10.5301/jn.5000138
660. Bowling CB, Muntner P, Sawyer P et al. Community mobility among older adults with reduced kidney function: a study of life-space. Am J Kidney Dis 2014; 63(3): 429 - 36. doi: 10.1053/j.ajkd.2013.07.022
661. Chin A Paw MJ, van Uffelen JG, Riphagen I, van Mechelen W. The functional effects of physical exercise training in frail older people: a systematic review. Sports Med 2008; 38(9): 781 - 93. doi: 10.2165/00007256-200838090-00006
662. Sugawara J, Miyachi M, Moreau KL et al. Age-related reductions in appendicular skeletal muscle mass: association with habitual aerobic exercise status. Clin Physiol Fund Imaging 2002; 22(3): 169 - 72. doi: 10.1046/j.1475-097x.2002.00413.x
663. Pavasini R, Guralnik J, Brown JC et al. Short Physical Performance Battery and all-cause mortality: systematic review and meta-analysis. BMC Med 2016; 14(1): 215. doi: 10.1186/s12916-016-0763-7
664. GBD 2013 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990 - 2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386(10010): 2287 - 2323. doi: 10.1016/S0140-6736(15)00128-2
665. Xu H, Suo J, Lian J. Cigarette smoking and risk of albuminuria in patients with type 2 diabetes: a systematic review and metaanalysis of observational studies. Int Urol Nephrol 2018; 50(5): 911 - 922. doi: 10.1007/s11255-018-1825-x
666. Liao D, Ma L, Liu J, Fu P. Cigarette smoking as a risk factor for diabetic nephropathy: A systematic review and meta-analysis of prospective cohort studies. PLoS One 2019; 14(2): e0210213. doi: 10.1371/journal.pone.0210213
667. Kar D, Gillies C, Nath M et al. Association of smoking and cardiometabolic parameters with albuminuria in people with type 2 diabetes mellitus: a systematic review and meta-analysis. Ada Diabetol 2019; 56(8): 839 - 850. doi: 10.1007/s00592-019-01293-x
668. Garofalo C, Borrelli S, Minutolo R et al. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int 2017; 91(5): 1224 - 1235. doi: 10.1016/j.kint.2016.12.013
669. Martens RJH, van der Berg JD, Stehouwer CDA et al. Amount and pattern of physical activity and sedentary behavior are associated with kidney function and kidney damage: The Maastricht Study. PLoS One 2018; 13(4): e0195306. doi: 10.1371/journal.pone.0195306
670. Parsons TJ, Sartini C, Ash S et al. Objectively measured physical activity and kidney function in older men; a cross-sectional population-based study. Age Ageing 2011; 46(6): 1010 - 1014. doi: 10.1093/ageing/afx091
671. Bach KE, Kelly JT, Palmer SC et al. Healthy Dietary Patterns and Incidence of CKD: A Meta-Analysis of Cohort Studies. Clin J Am Soc Nephrol 2019; 14(10): 1441 - 1449. doi: 10.2215/CJN.00530119
672. Mottl AK, Buse JB, Ismail-Beigi F et al. Long-Term Effects of Intensive Glycemic and Blood Pressure Control and Fenofibrate Use on Kidney Outcomes. Clin J Am Soc Nephrol 2018; 13(11): 1693 - 1702. doi: 10.2215/CJN.06200518
673. Ruospo M, Saglimbene VM, Palmer SC et al. Glucose targets for preventing diabetic kidney disease and its progression. Cochrane Database Syst Rev 2017; 6(6): CD010137. doi: 10.1002/14651858.CD010137.pub2
674. Persson F, Lindhardt M, Rossing P, Parving HH. Prevention of microalbuminuria using early intervention with renin-angiotensin system inhibitors in patients with type 2 diabetes: A systematic review. J Renin Angiotensin Aldosterone Sysf 2016; 17(3): 1470320316652047. doi: 10.1177/1470320316652047
675. Patti G, Ricottini E, Nusca A et al. Short-term, high-dose Atorvastatin pretreatment to prevent contrast-induced nephropathy in patients with acute coronary syndromes undergoing percutaneous coronary intervention (from the ARMYDA-CIN [atorvastatin for reduction of myocardial damage during angioplasty-contrast-induced nephropathy] trial. Am J Cardiol 2011; 108(1): 1 - 7. doi: 10.1016/j.amjcard.2011.03.001
676. Han Y, Zhu G, Han L et al. Impact of Rosuvastatin on contrast-induced acute kidney injury in patients at high risk for nephropathy undergoing elective angiography. Am J Cardiol 2015; 115(7): 867 - 71. doi: 10.1016/j.amjcard.2015.01.007
677. Fu N, Liang M, Yang S. High Loading Dose of Atorvastatin for the Prevention of Serum Creatinine and Cystatin C-Based Contrast-Induced Nephropathy Following Percutaneous Coronary Intervention. Angiology 2018; 69(8): 692 - 699. doi: 10.1177/0003319717750903
678. Xinwei J, Xianghua F, Jing Z et al. Comparison of usefulness of simvastatin 20 mg versus 80 mg in preventing contrast-induced nephropathy in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Am J Cardiol 2009; 104(4): 519 - 24. doi: 10.1016/j.amjcard.2009.04.014
679. Brar SS, Aharonian V, Mansukhani P et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet 2014; 383(9931): 1814 - 23. doi: 10.1016/S0140-6736(14)60689-9
680. Black C, Sharma P, Scotland G et al. Early referral strategies for management of people with markers of renal disease: a systematic review of the evidence of clinical effectiveness, cost-effectiveness and economic analysis. Health Technol Assess 2010; 14(21): 1 - 184. doi: 10.3310/hta14210
681. Chan MR, Dali AT, Fletcher KE et al. Outcomes in patients with chronic kidney disease referred late to nephrologists: a metaanalysis. Am J Med 2007; 120(12): 1063 - 70. doi: 10.1016/j.amjmed.2007.04.024
682. Smart NA, Titus TT. Outcomes of early versus late nephrology referral in chronic kidney disease: a systematic review. Am J Med 2011; 124(11): 1073 - 80. e2. doi: 10.1016/j.amjmed.2011.04.026
683. https://minzdrav.gov.ru/poleznye-resursy/nauchno-prakticheskiy-sovet
- Гражданский кодекс (ГК РФ)
- Жилищный кодекс (ЖК РФ)
- Налоговый кодекс (НК РФ)
- Трудовой кодекс (ТК РФ)
- Уголовный кодекс (УК РФ)
- Бюджетный кодекс (БК РФ)
- Арбитражный процессуальный кодекс
- Конституция РФ
- Земельный кодекс (ЗК РФ)
- Лесной кодекс (ЛК РФ)
- Семейный кодекс (СК РФ)
- Уголовно-исполнительный кодекс
- Уголовно-процессуальный кодекс
- Производственный календарь на 2025 год
- МРОТ 2024
- ФЗ «О банкротстве»
- О защите прав потребителей (ЗОЗПП)
- Об исполнительном производстве
- О персональных данных
- О налогах на имущество физических лиц
- О средствах массовой информации
- Производственный календарь на 2024 год
- Федеральный закон "О полиции" N 3-ФЗ
- Расходы организации ПБУ 10/99
- Минимальный размер оплаты труда (МРОТ)
- Календарь бухгалтера на 2024 год
- Частичная мобилизация: обзор новостей