Документ применяется с 1 января 2024 года.

Список литературы

1. Гусев Е.И., Бойко А., Столяров И. Рассеянный Склероз. Москва: РеалТайм; 2009.

2. Ramagopalan S V., Dobson R, Meier UC, Giovannoni G. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. Lancet Neurol. 2010; 9(7): 727 - 739. doi: 10.1016/S1474-4422(10)70094-6

3. Loma I, Heyman R. Multiple Sclerosis: Pathogenesis and Treatment. Curr Neuropharmacol. 2011; 9(3): 409 - 416. doi: 10.2174/157015911796557911

4. Thompson AJ, Baneke P. Multiple Sclerosis International Federation (MSIF) Design and Editorial Support by Summers Editorial & Design Graphics by Nutmeg Productions Printed by Modern Colour Solutions.; 2013. www.msif.org. Accessed April 13, 2020.

5. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018; 17(2): 162 - 173. doi: 10.1016/S1474-4422(17)30470-2

6. Gusev E, Boiko A, Bikova O, et al. The natural history of early onset multiple sclerosis: Comparison of data from Moscow and Vancouver. In: Clinical Neurology and Neurosurgery. Vol 104. Clin Neurol Neurosurg; 2002: 203 - 207. doi: 10.1016/S0303-8467(02)00039-2

7. Simone IL, Carrara D, Tortorella C, et al. Course and prognosis in early-onset MS: Comparison with adult-onset forms. Neurology. 2002; 59(12): 1922 - 1928. doi: 10.1212/01.WNL.0000036907.37650.8E

8. Etemadifar M, Afzali P, Tabrizi N, Hosseini S-A. Pediatric Multiple Sclerosis with Primary Progressive Course-Report of a Retrospective Cohort Study in Iran. Neuropediatrics. 2012; 44(03): 167 - 170. doi: 10.1055/s-0032-1329614

9. Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology. 2014; 83(3): 278 - 286. doi: 10.1212/WNL.0000000000000560

10. CHMP. Committee for Medicinal Products for Human Use (CHMP) Assessment Report.; 2014. www.ema.europa.eu. Accessed April 13, 2020.

11. Huisman E, Papadimitropoulou K, Jarrett J, et al. Systematic literature review and network meta-analysis in highly active relapsing-remitting multiple sclerosis and rapidly evolving severe multiple sclerosis. BMJ Open. 2017; 7(3): e013430. doi: 10.1136/bmjopen-2016-013430

12. Van Der Vuurst De Vries RM, Mescheriakova JY, Wong YYM, et al. Application of the 2017 Revised McDonald Criteria for Multiple Sclerosis to Patients with a Typical Clinically Isolated Syndrome. JAMA Neurol. 2018; 75(11): 1392 - 1398. doi: 10.1001/jamaneurol.2018.2160

13. Lee DH, Peschke M, Utz KS, Linker RA. Diagnostic value of the 2017 McDonald criteria in patients with a first demyelinating event suggestive of relapsing-remitting multiple sclerosis. Eur J Neurol. 2019; 26(3): 540 - 545. doi: 10.1111/ene.13853

14. Miclea A, Salmen A, Wiest R, et al. Prediction of conversion to multiple sclerosis using the 2017 McDonald and 2016 MAGNIMS criteria in patients with clinically isolated syndrome: a retrospective single-centre study. Ther Adv Neurol Disord. 2019; 12. doi: 10.1177/1756286419835652

15. Wong YYM, De Mol CL, Van Der Vuurst De Vries RM, et al. Real-world validation of the 2017 McDonald criteria for pediatric MS. Neurol Neuroimmunol NeuroInflammation. 2019; 6(2). doi: 10.1212/NXI.0000000000000528

16. Fadda G, Brown RA, Longoni G, et al. MRI and laboratory features and the performance of international criteria in the diagnosis of multiple sclerosis in children and adolescents: a prospective cohort study. Lancet Child Adolesc Heal. 2018; 2(3): 191 - 204. doi: 10.1016/S2352-4642(18)30026-9

17. Krupp LB, Tardieu M, Amato MP, et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: Revisions to the 2007 definitions. Mult Scler J. 2013; 19(10): 1261 - 1267. doi: 10.1177/1352458513484547

18. Solomon AJ, Bourdette DN, Cross AH, et al. The contemporary spectrum of multiple sclerosis misdiagnosis. Neurology. 2016; 87(13): 1393 - 1399. doi: 10.1212/WNL.0000000000003152

19. Yamout BI, Khoury SJ, Ayyoubi N, et al. Alternative diagnoses in patients referred to specialized centers for suspected MS. Mult Scler Relat Disord. 2017; 18: 85 - 89. doi: 10.1016/j.msard.2017.09.016

20. Solomon AJ, Klein EP, Bourdette D. 'Undiagnosing' multiple sclerosis: The challenge of misdiagnosis in MS. Neurology. 2012; 78(24): 1986 - 1991. doi: 10.1212/WNL.0b013e318259e1b2

21. Ghezzi A, Martinelli V, Torri V, et al. Long-term follow-up of isolated optic neuritis: The risk of developing multiple sclerosis, its outcome, and the prognostic role of paraclinical tests. J Neurol. 1999; 246(9): 770 - 775. doi: 10.1007/s004150050453

22. Meyer-Moock S, Feng YS, Maeurer M, Dippel FW, Kohlmann T. Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol. 2014; 14(1): 58. doi: 10.1186/1471-2377-14-58

23. Bin Sawad A, Seoane-Vazquez E, Rodriguez-Monguio R, Turkistani F. Evaluation of the Expanded Disability Status Scale and the Multiple Sclerosis Functional Composite as clinical endpoints in multiple sclerosis clinical trials: quantitative meta-analyses. Curr Med Res Opin. 2016; 32(12): 1969 - 1974. doi: 10.1080/03007995.2016.1222516

24. Perry M, Swain S, Kemmis-Betty S, et al. Multiple sclerosis: Summary of NICE guidance. BMJ. 2014; 349. doi: 10.1136/bmj.g5701

25. Epstein D. J., Dunn J., Deresinski S. Infectious complications of multiple sclerosis therapies: implications for screening, prophylaxis, and management // Open forum infectious diseases. - US: Oxford University Press, 2018; 5 (8): ofy174.

26. Wei LK, Griffiths LR, Irene L, Kooi CW. Association of NOTCH3 gene polymorphisms with ischemic stroke and its subtypes: A meta-analysis. Med. 2019; 55(7). doi: 10.3390/medicina55070351

27. Senol MG, Sonmez G, Ozdag F, Saracoglu M. Reversible myelopathy with vitamin B12 deficiency. Singapore Med J. 2008; 49(11): e330-2. http://www.ncbi.nlm.nih.gov/pubmed/19037544. Accessed April 14, 2020.

28. Hammarin AL, Bogdanovic G, Svedhem V, Pirskanen R, Morfeldt L, Grandien M. Analysis of PCR as a tool for detection of JC virus DNA in cerebrospinal fluid for diagnosis of progressive multifocal leukoencephalopathy. J Clin Microbiol. 1996; 34(12): 2929 - 2932. doi: 10.1128/jcm.34.12.2929-2932.1996

29. Giovannoni G, Marta M, Davis A, Turner B, Gnanapavan S, Schmierer K. Switching patients at high risk of pml from natalizumab to another disease-modifying therapy. Pract Neurol. 2016; 16(5): 389 - 393. doi: 10.1136/practneurol-2015-001355

30. Ruiz-Gaviria R, Baracaldo I, Castaneda C, Ruiz-Patino A, Acosta-Hernandez A, Rosselli D. Specificity and sensitivity of aquaporin 4 antibody detection tests in patients with neuromyelitis optica: A meta-analysis. Mult Scler Relat Disord. 2015; 4(4): 345 3 49. doi: 10.1016/j.msard.2015.06.003

31. Slater CA, Davis RB, Shmerling RH. Antinuclear antibody testing: A study of clinical utility. Arch Intern Med. 1996; 156(13): 1421 - 1425. doi: 10.1001/archinte.156.13.1421

32. Leuchten N, Hoyer A, Brinks R, et al. Performance of Antinuclear Antibodies for Classifying Systemic Lupus Erythematosus: A Systematic Literature Review and Meta-Regression of Diagnostic Data. Arthritis Care Res. 2018; 70(3): 428 - 438. doi: 10.1002/acr.23292

33. Haga HJ, Hulten B, Bolstad AI, Ulvestad E, Jonsson R. Reliability and sensitivity of diagnostic tests for primary Sjogren's syndrome. J Rheumatol. 1999; 26(3): 604 - 608.

34. Dobson R, Ramagopalan S, Davis A, Giovannoni G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: A meta-analysis of prevalence, prognosis and effect of latitude. J Neurol Neurosurg Psychiatry. 2013; 84(8): 909 - 914. doi: 10.1136/jnnp-2012-304695

35. Villar LM, Masterman T, Casanova B, et al. CSF oligoclonal band patterns reveal disease heterogeneity in multiple sclerosis. J Neuroimmunol. 2009; 211(1-2): 101 - 104. doi: 10.1016/j.jneuroim.2009.03.003

36. Skov AG, Skov T, Frederiksen JL. Oligoclonal bands predict multiple sclerosis after optic neuritis: a literature survey. Mult Scler. 2011; 17(4): 404 - 410. doi: 10.1177/1352458510391340

37. Bourahoui A, de Seze J, Guttierez R, et al. CSF isoelectrofocusing in a large cohort of MS and other neurological diseases. Eur J Neurol. 2004; 11(8): 525 - 529. doi: 10.1111/j.1468-1331.2004.00822.x

38. Arrambide G, Tintore M, Espejo C, et al. The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain. 2018; 141(4): 1075 - 1084. doi: 10.1093/brain/awy006

39. Kuhle J, Disanto G, Dobson R, et al. Conversion from clinically isolated syndrome to multiple sclerosis: A large multicantre study. Mult Scler. 2015; 21(8): 1013 - 1024. doi: 10.1177/1352458514568827

40. Passerini G, Dalla Costa G, Sangalli F, et al. Free Light Chains and Intrathecal B Cells Activity in Multiple Sclerosis: A Prospective Study and Meta-Analysis. Mult Scler Int. 2016; 2016: 2303857. doi: 10.1155/2016/2303857

41. Desplat-Jego S, Feuillet L, Pelletier J, Bernard D, Cherif AA, Boucraut J. Quantification of immunoglobulin free light chains in cerebrospinal fluid by nephelometry. J Clin Immunol. 2005; 25(4): 338 - 345. doi: 10.1007/s10875-005-5371-9

42. Senel M, Tumani H, Lauda F, et al. Cerebrospinal fluid immunoglobulin kappa light chain in clinically isolated syndrome and multiple sclerosis. PLoS One. 2014; 9(4). doi: 10.1371/journal.pone.0088680

43. Presslauer S, Milosavljevic D, Huebl W, et al. Validation of kappa free light chains as a diagnostic biomarker in multiple sclerosis and clinically isolated syndrome: A multicenter study. Mult Scler. 2016; 22(4): 502 - 510. doi: 10.1177/1352458515594044

44. Makshakov G, Nazarov V, Kochetova O, Surkova E, Lapin S, Evdoshenko E. Diagnostic and prognostic value of the cerebrospinal fluid concentration of immunoglobulin free light chains in clinically isolated syndrome with conversion to multiple sclerosis. PLoS One. 2015; 10(11). doi: 10.1371/journal.pone.0143375

45. Makshakov GS, Nazarov VD, Totolyan NA, et al. The association of intrathecal production of immunoglobulin free light chains and progression of multiple sclerosis. Zhurnal Nevrol i Psihiatr Im SKA Korsakova. 2017; 117(10): 4 - 10. doi: 10.17116/jnevro20171171024-10

46. Rinker JR, Trinkaus K, Cross AH. Elevated CSF free kappa light chains correlate with disability prognosis in multiple sclerosis. Neurology. 2006; 67(7): 1288 - 1290. doi: 10.1212/01.wnl.0000238107.31364.21

47. Carmosino MJ, Brousseau KM, Arciniegas DB, Carboy JR. Initial evaluations for multiple sclerosis in a university multiple sclerosis center: Outcomes and role of magnetic resonance imaging in referral. Arch Neurol. 2005; 62(4): 585 - 590. doi: 10.1001/archneur.62.4.585

48. Hou Y, Zhang W-Y. Prognostic value of magnetic resonance imaging in patients with clinically isolated syndrome conversion to multiple sclerosis: A meta-analysis. NeurolIndia. 2013; 61(3): 231. doi: 10.4103/0028-3886.115058

49. Брюхов В., Кротенкова И., Морозова С., Кротенкова М. Стандартизация МРТ-исследований при рассеянном склерозе. Журнал неврологии и психиатрии им Корсакова. 2016; 10(2): 27 - 34.

50. SombekkeMH, WattjesMP, BalkLJ, etal. Spinal cord lesions in patients with clinically isolated syndrome: A powerful tool in diagnosis and prognosis. Neurology. 2013; 80(1): 69 - 75. doi: 10.1212/WNL.0b013e31827b1a67

51. Traboulsee A, Simon JH, Stone L, et al. Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. Am J Neuroradiol. 2016; 37(3): 394 - 401. doi: 10.3174/ajnr.A4539

52. Dalton CM, Brex PA, Miszkiel KA, et al. New T2 lesions enable an earlier diagnosis of multiple sclerosis in clinically isolated syndromes. Ann Neurol. 2003; 53(5): 673 - 676. doi: 10.1002/ana.10580

53. Pestalozza IF, Pozzilli C, Di Legge S, et al. Monthly brain magnetic resonance imaging scans in patients with clinically isolated syndrome. Mult Scler. 2005; 11(4): 390 - 394. doi: 10.1191/1352458505ms1175oa

54. Filippi M, Rocca MA, Ciccarelli O, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016; 15(3): 292 - 303. doi: 10.1016/S1474-4422(15) 00393-2

55. De Stefano N, Giorgio A, Tintore M, et al. Radiologically isolated syndrome or subclinical multiple sclerosis: MAGNIMS consensus recommendations. Mult Scler. 2018; 24(2): 214 - 221. doi: 10.1177/1352458517717808

56. Alessandrino F, Pichiecchio A, Mallucci G, et al. Do MRI Structured Reports for Multiple Sclerosis Contain Adequate Information for Clinical Decision Making? Am J Roentgenol. 2018; 210(1): 24 - 29. doi: 10.2214/AJR.17.18451

57. Arevalo O, Riascos R, Rabiei P, Kamali A, Nelson F. Standardizing Magnetic Resonance Imaging Protocols, Requisitions, and Reports in Multiple Sclerosis: An Update for Radiologist Based on 2017 Magnetic Resonance Imaging in Multiple Sclerosis and 2018 Consortium of Multiple Sclerosis Centers Consensus Guidelines. J Comput Assist Tomogr. 2019; 43(1): 1 - 12. doi: 10.1097/RCT.0000000000000767

58. Kupersmith MJ, Alban T, Zeiffer B, Lefton D. Contrast-enhanced MRI in acute optic neuritis: relationship to visual performance. Brain. 2002; 125(Pt 4): 812 - 822. doi: 10.1093/brain/awf087

59. Frederiksen JL, Petrera J. Serial visual evoked potentials in 90 untreated patients with acute optic neuritis. Surv Ophthalmol. 1999; 44(2 SUPPL. 1). doi: 10.1016/S0039-6257(99)00095-8

60. Petzold A, de Boer JF, Schippling S, et al. Optical coherence tomography in multiple sclerosis: A systematic review and meta-analysis. Lancet Neurol. 2010; 9(9): 921 - 932. doi: 10.1016/S1474-4422(10)70168-X

61. Martinez-Lapiscina EH, Arnow S, Wilson JA, et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: A cohort study. Lancet Neurol. 2016; 15(6): 574 - 584. doi: 10.1016/S1474-4422(16)00068-5

62. Britze J, Pihl-Jensen G, Frederiksen JL. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: a systematic review and meta-analysis. J Neurol. 2017; 264(9): 1837 - 1853. doi: 10.1007/s00415-017-8531-y

63. (UK) NCGC. Multiple Sclerosis. National Institute for Health and Care Excellence (UK); 2014. http: //www.ncbi.nlm.nih.gov/pubmed/25340249. Accessed April 13, 2020.

64. Miller DM, Weinstock-Guttman B, Bethoux F, et al. A meta-analysis of methylprednisolone in recovery from multiple sclerosis exacerbations. Mult Scler J. 2000; 6(4): 267 - 273. doi: 10.1177/135245850000600408

65. Citterio A, La Mantia L, Ciucci G, et al. Corticosteroids or ACTH for acute exacerbations in multiple sclerosis. Cochrane Database Syst Rev. 2000; 2000(4). doi: 10.1002/14651858.CD001331

66. Freedman MS, Selchen D, Arnold DL, et al. Treatment optimization in MS: Canadian MS Working Group updated recommendations. Can J Neurol Sci. 2013; 40(3): 307 - 323. doi: 10.1017/S0317167100014244

67. Hofer S. et al. Management of Acute Demyelinating Attacks in the Pediatric Population: A Swiss Consensus Statement // Clinical and translational neuroscience. - 2021. - Т. 5. - N. 2. - С. 17.

68. Repovic P, Lublin FD. Treatment of Multiple Sclerosis Exacerbations. Neurol Clin. 2011; 29(2): 389 - 400. doi: 10.1016/j.ncl.2010.12.012

69. Mantia L La, Eoli M, Milanese C, Salmaggi A, Dufour A, Torri V. Double-blind trial of dexamethasone versus methylprednisolone in multiple sclerosis acute relapses. Eur Neurol. 1994; 34(4): 199 - 203. doi: 10.1159/000117038

70. Narula S. New Perspectives in Pediatric Neurology - Multiple Sclerosis. Curr Probl Pediatr Adolesc Health Care. 2016; 46(2): 62 - 69. doi: 10.1016/j.cppeds.2015.11.002

71. Narula S, Hopkins SE, Banwell B. Treatment of Pediatric Multiple Sclerosis. Curr Treat Options Neurol. 2015; 17(3): 1 - 12. doi: 10.1007/s11940-014-0336-z

72. Waldman AT, Gorman MP, Rensel MR, et al. Management of pediatric central nervous system demyelinating disorders: Consensus of United States neurologists. J Child Neurol. 2011; 26(6): 675 - 682. doi: 10.1177/0883073810395141

73. Burton JM BJ. Cochrane Database of Systematic Reviews Oral versus intravenous steroids for treatment of relapses in multiple sclerosis (Review) Oral versus intravenous steroids for treatment of relapses in multiple sclerosis (Review). 2012. doi: 10.1002/14651858.CD006921.pub3

74. Le Page E, Veillard D, Laplaud DA, et al. Oral versus intravenous high-dose methylprednisolone for treatment of relapses in patients with multiple sclerosis (COPOUSEP): A randomised, controlled, double-blind, non-inferiority trial. Lancet. 2015; 386(9997): 974 - 981. doi: 10.1016/S0140-6736(15)61137-0

75. Pena JA, Lotze TE. Pediatric multiple sclerosis: current concepts and consensus definitions. Autoimmune Dis. 2013; 2013: 673947. doi: 10.1155/2013/673947

76. Ramo-Tello C, Grau-Lopez L, Tintore M, et al. A randomized clinical trial of oral versus intravenous methylprednisolone for relapse of MS. Mult Scler J. 2014; 20(6): 717 - 725. doi: 10.1177/1352458513508835

77. Liu S, Liu X, Chen S, Xiao Y, Zhuang W. Oral versus intravenous methylprednisolone for the treatment of multiple sclerosis relapses: A meta-analysis of randomized controlled trials. PLoS One. 2017; 12(11). doi: 10.1371/journal.pone.0188644

78. Cortese I, Chaudhry V, So YT, Cantor F, Cornblath DR, Rae-Grant A. Evidence-based guideline update: Plasmapheresis in neurologic disorders: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2011; 76(3): 294 - 300. doi: 10.1212/WNL.0b013e318207b1f6

79. Weiner HL, Dau PC, Khatri BO, et al. Double-blind study of true vs. Sham plasma exchange in patients treated with immunosuppression for acute attacks of multiple sclerosis. Neurology. 1989; 39(9): 1143 - 1149. doi: 10.1212/wnl.39.9.1143

80. Weinshenker BG, O'Brien PC, Petterson TM, et al. A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol. 1999; 46(6): 878 - 886. doi: 10.1002/1531-8249(199912) 46: 6<878:: AID-ANA10>3.0.CO; 2-Q

81. Iannetti P. Intravenous immunoglobulin and interferon: Successful treatment of optic neuritis in pediatric multiple sclerosis. J Child Neurol. 2004; 19(8): 623 - 626. doi: 10.1177/088307380401900811

82. Apak RA, Anlar B, Saatci I. A case of relapsing acute disseminated encephalomyelitis with high dose corticosteroid treatment. Brain Dev. 1999; 21(4): 279 - 282. doi: 10.1016/S0387-7604(99)00011-X

83. Darabi K, Abdel-Wahab O, Dzik WH. Current usage of intravenous immune globulin and the rationale behind it: The Massachusetts General Hospital data and a review of the literature. Transfusion. 2006; 46(5): 741 - 753. doi: 10.1111/j.1537-2995.2006.00792.x

84. Trebst C, Stangel M. Promotion of Remyelination by Immunoglobulins: Implications for the Treatment of Multiple Sclerosis. Curr Pharm Des. 2005; 12(2): 241 - 249. doi: 10.2174/138161206775193118

85. Jacobs LD, Cookfair DL, Rudick RA, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG) [see comments] [published erratum appears in Ann Neurol 1996 Sep; 40(3): 480]. Ann Neurol. 1996; 39(3): 285 - 294.

86. La Mantia L, Di Pietrantonj C, Rovaris M, et al. Interferons-beta versus glatiramer acetate for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev. 2016; 2016(11): CD009333. doi: 10.1002/14651858.CD009333.pub3

87. Comi G, Filippi M, Wolinsky JS. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging--measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann Neurol. 2001; 49(3): 290 - 297. http: //www.ncbi.nlm.nih.gov/pubmed/11261502. Accessed April 15, 2020.

88. Ebers G. PRISMS Study Group. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet. 1998; 352: 1498 - 504.

89. He D, Zhang C, Zhao X, et al. Teriflunomide for multiple sclerosis. Cochrane Database Syst Rev. 2016; 2016(3). doi: 10.1002/14651858.CD009882.pub3

90. Gold R, Kappos L, Arnold DL, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012; 367(12): 1098 - 1107. doi: 10.1056/NEJMoa1114287

91. Xu Z, Zhang F, Sun F, Gu K, Dong S, He D. Dimethyl fumarate for multiple sclerosis. Cochrane Database Syst Rev. 2015; 2015(4). doi: 10.1002/14651858.CD011076.pub2

92. Brown JWL, Coles A, Horakova D, et al. Association of Initial Disease-Modifying Therapy with Later Conversion to Secondary Progressive Multiple Sclerosis. JAMA - J Am Med Assoc. 2019; 321(2): 175 - 187. doi: 10.1001/jama.2018.20588

93. Newsome SD, Kieseier BC, Arnold DL, et al. Subgroup and sensitivity analyses of annualized relapse rate over 2 years in the ADVANCE trial of peginterferon beta-1a in patients with relapsing-remitting multiple sclerosis. J Neurol. 2016; 263(9): 1778 - 1787. doi: 10.1007/s00415-016-8182-4

94. Durelli L, Verdun E, Barbero P, et al. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: Results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet. 2002; 359(9316): 1453 - 1460. doi: 10.1016/S0140-6736(02)08430-1

95. Tenembaum SN, Banwell B, Pohl D, et al. Subcutaneous interferon beta-1a in pediatric multiple sclerosis: A retrospective study. J Child Neurol. 2013; 28(7): 849 - 856. doi: 10.1177/0883073813488828

96. Kieseier BC, Arnold DL, Balcer LJ, et al. Peginterferon beta-1a in multiple sclerosis: 2-year results from ADVANCE. Mult Scler. 2015; 21(8): 1025 - 1035. doi: 10.1177/1352458514557986

97. Khan O, Rieckmann P, Boyko A, Selmaj K, Zivadinov R. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol. 2013; 73(6): 705 - 713. doi: 10.1002/ana.23938

98. Parks NE, Flanagan EP, Lucchinetti CF, Wingerchuk DM. NEDA treatment target? No evident disease activity as an actionable outcome in practice. J Neurol Sci. 2017; 383: 31 - 34. doi: 10.1016/j.jns.2017.10.015

99. Rotstein DL, Healy BC, Malik MT, Chitnis T, Weiner HL. Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol. 2015; 72(2): 152 - 158. doi: 10.1001/jamaneurol.2014.3537

100. Giovannoni G, Turner B, Gnanapavan S, Offiah C, Schmierer K, Marta M. Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Mult Scler Relat Disord. 2015; 4(4): 329 - 333. doi: 10.1016/j.msard.2015.04.006

101. Hohlfeld R, Meinl E. Ocrelizumab in multiple sclerosis: markers and mechanisms. Lancet Neurol. 2017; 16(4): 259 - 261. doi: 10.1016/S1474-4422(17)30048-0

102. Giovannoni G. Cladribine to Treat Relapsing Forms of Multiple Sclerosis. Neurotherapeutics. 2017; 14(4): 874 - 887. doi: 10.1007/s13311-017-0573-4

103. Ahrweiller K, Rousseau C, Le Page E, et al. Decreasing impact of late relapses on disability worsening in secondary progressive multiple sclerosis. Mult Scler J. 2019. doi: 10.1177/1352458519848090

104. Soldan MMP, Novotna M, Zeid NA, et al. Relapses and disability accumulation in progressive multiple sclerosis. Neurology. 2015; 84(1): 81 - 88. doi: 10.1212/WNL.0000000000001094

105. Hyun JW, Kim SH, Jeong IH, et al. Utility of the Rio score and modified Rio score in Korean patients with multiple sclerosis. PLoS One. 2015; 10(5). doi: 10.1371/journal.pone.0129243

106. Rio J, Rovira A, Tintore M, et al. Relationship between MRI lesion activity and response to IFN-00000001.wmz in relapsing-remitting multiple sclerosis patients. Mult Scler. 2008; 14(4): 479 - 484. doi: 10.1177/1352458507085555

107. Sormani MP, Rio J, Tintore M, et al. Scoring treatment response in patients with relapsing multiple sclerosis. Mult Scler J. 2013; 19(5): 605 - 612. doi: 10.1177/1352458512460605

108. Rio J, Rovira A, Tintore M, et al. Evaluating the response to glatiramer acetate in relapsing-remitting multiple sclerosis (RRMS) patients. Mult Scler. 2014; 20(12): 1602 - 1608. doi: 10.1177/1352458514527863

109. Rio J, Castillo J, Rovira A, et al. Measures in the first year of therapy predict the response to interferon 00000002.wmz in MS. Mult Scler. 2009; 15(7): 848 - 853. doi: 10.1177/1352458509104591

110. Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet. 2012; 380(9856): 1829 - 1839. doi: 10.1016/S0140-6736(12)61768-1

111. Trojano M, Tintore M, Montalban X, et al. Treatment decisions in multiple sclerosis - insights from real-world observational studies. Nat Rev Neurol. 2017; 13(2): 105 - 118. doi: 10.1038/nrneurol.2016.188

112. Spelman T, Kalincik T, Zhang A, et al. Comparative efficacy of switching to natalizumab in active multiple sclerosis. Ann Clin Transl Neurol. 2015; 2(4): 373 - 387. doi: 10.1002/acn3.180

113. Spelman T, Mekhael L, Burke T, et al. Risk of early relapse following the switch from injectables to oral agents for multiple sclerosis. Eur J Neurol. 2016; 23(4): 729 - 736. doi: 10.1111/ene.12929

114. He A, Spelman T, Jokubaitis V, et al. Comparison of switch to fingolimod or interferon beta/glatiramer acetate in active multiple sclerosis. JAMA Neurol. 2015; 72(4): 405 - 413. doi: 10.1001/jamaneurol.2014.4147

115. Baroncini D, Ghezzi A, Annovazzi PO, et al. Natalizumab versus fingolimod in patients with relapsing-remitting multiple sclerosis non-responding to first-line injectable therapies. Mult Scler. 2016; 22(10): 1315 - 1326. doi: 10.1177/1352458516650736

116. Barbin L, Rousseau C, Jousset N, et al. Comparative efficacy of fingolimod vs natalizumab. Neurology. 2016; 86(8): 771 - 778. doi: 10.1212/WNL.0000000000002395

117. Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006; 354(9): 899 - 910. doi: 10.1056/NEJMoa044397

118. Pucci E, Giuliani G, Solari A, et al. Natalizumab for relapsing remitting multiple sclerosis. Cochrane Database Syst Rev. October 2011. doi: 10.1002/14651858.cd007621.pub2

119. Extended interval dosing of natalizumab: is efficacy preserved?. ECTRIMS Online Library. Clerico M. Oct 10 2018; 228431. https://onlinelibrary.ectrims-congress.eu/ectrims/2018/ectrims-2018/228431/marinella.clerico.extended.interval.dosing.of.natalizumab.is.efficacy.preserved.html. Accessed April 15, 2020.

120. Bomprezzi R, Pawate S. Extended interval dosing of natalizumab: A two-center, 7-year experience. Ther Adv Neurol Disord. 2014; 7(5): 227 - 231. doi: 10.1177/1756285614540224

121. Yamout BI, Sahraian MA, Ayoubi N El, et al. Efficacy and safety of natalizumab extended interval dosing. Mult Scler Relat Disord. 2018; 24: 113 - 116. doi: 10.1016/j.msard.2018.06.015

122. Calabresi PA, Radue EW, Goodin D, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014; 13(6): 545 - 556. doi: 10.1016/S1474-4422(14)70049-3

123. La Mantia L, Tramacere I, Firwana B, Pacchetti I, Palumbo R, Filippini G. Fingolimod for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev. 2016; 2016(4): CD009371. doi: 10.1002/14651858.CD009371.pub2

124. Chitnis T, Arnold DL, Banwell B, et al. Trial of fingolimod versus interferon beta-1a in pediatric multiple sclerosis. N Engl J Med. 2018; 379(11): 1017 - 1027. doi: 10.1056/NEJMoa1800149

125. Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet. 2012; 380(9856): 1819 - 1828. doi: 10.1016/S0140-6736(12)61769-3

126. Zhang J, Shi S, Zhang Y, et al. Alemtuzumab versus interferon beta 1a for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev. 2017; 2017(11). doi: 10.1002/14651858.CD010968.pub2

127. Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017; 376(3): 221 - 234. doi: 10.1056/NEJMoa1601277

128. Menge T, Dubey D, Warnke C, Hartung HP, Stuve O. Ocrelizumab for the treatment of relapsing-remitting multiple sclerosis. Expert Rev Neurother. 2016; 16(10): 1131 - 1139. doi: 10.1080/14737175.2016.1227242

129. Giovannoni G, Comi G, Cook S, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010; 362(5): 416 - 426. doi: 10.1056/NEJMoa0902533

130. Martinelli Boneschi F, Vacchi L, Rovaris M, Capra R, Comi G. Mitoxantrone for multiple sclerosis. Cochrane Database Syst Rev. 2013; 2013(5): CD002127. doi: 10.1002/14651858.CD002127.pub3

131. Kappos L, Radue EW, Comi G, et al. Switching from natalizumab to fingolimod: A randomized, placebo-controlled study in RRMS. Neurology. 2015; 85(1): 29 - 39. doi: 10.1212/WNL.0000000000001706

132. Jokubaitis VG, Li V, Kalincik T, et al. Fingolimod after natalizumab and the risk of short-term relapse. Neurology. 2014; 82(14): 1204 - 1211. doi: 10.1212/WNL.0000000000000283

133. Pfeuffer S, Schmidt R, Straeten FA, et al. Efficacy and safety of alemtuzumab versus fingolimod in RRMS after natalizumab cessation. J Neurol. 2019; 266(1): 165 - 173. doi: 10.1007/s00415-018-9117-z

134. Hodgkinson S, Sharma M. Temporal Profile of Lymphocytes Following Treatment with Cladribine Tablets in Patients Switching from Lymphocyte Depleting or Sequestering Disease Modifying Drugs (DMDs).

135. Mihalova T, Vernon K, Sharaf N, Talbot P, Rog D. 195 MS disease modifying therapy (DMT) sequencing - tysabri to mavenclad de-escalation in JC-virus positive MS patients. J Neurol Neurosurg Psychiatry. 2019; 90(12): e49 - e50. doi: 10.1136/jnnp-2019-abn-2.166

136. Switching from natalizumab to anti-CD20 monoclonal antibodies:... ECTRIMS Online Library. Levin S. Sep 11 2019; 279030. https: //onlinelibrary.ectrims-congress.eu/ectrims/2019/stockholm/279030/seth.levin.switching.from.natalizumab.to.anti-cd20.monoclonal.antibodies.html. Accessed June 1, 2020.

137. Vollmer B, Honce JM, Sillau S, et al. The impact of very short transition times on switching from Natalizumab to Fingolimod on imaging and clinical effectiveness outcomes in multiple sclerosis. J Neurol Sci. 2018; 390: 89 - 93. doi: 10.1016/j.jns.2018.04.021

138. Alping P, Frisell T, Novakova L, et al. Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann Neurol. 2016; 79(6): 950 - 958. doi: 10.1002/ana.24651

139. La Mantia L, Vacchi L, Di Pietrantonj C, et al. Interferon beta for secondary progressive multiple sclerosis. Cochrane database Syst Rev. 2012; 1: CD005181. doi: 10.1002/14651858.CD005181.pub3

140. Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017; 376(3): 209 - 220. doi: 10.1056/NEJMoa1606468

141. Yang T ting, Wang L, Deng X yang, Yu G. Pharmacological treatments for fatigue in patients with multiple sclerosis: A systematic review and meta-analysis. J Neurol Sci. 2017; 380: 256 - 261. doi: 10.1016/j.jns.2017.07.042

142. Van Kerrebroeck P. et al. Dose-ranging study of tolterodine in patients with detrusor hyperreflexia // Neurourology and Urodynamics: Official Journal of the International Continence Society. - 1998. - Т. 17. - N. 5. - С. 499 - 512.

143. Nicholas RS, Friede T, Hollis S, Young CA. Anticholinergics for urinary symptoms in multiple sclerosis. Cochrane Database Syst Rev. 2009; (1). doi: 10.1002/14651858.CD004193.pub2

144. Harvey MA, Baker K, Wells GA. Tolterodine versus oxybutynin in the treatment of urge urinary incontinence: A meta-analysis. Am J Obstet Gynecol. 2001; 185(1): 56 - 61. doi: 10.1067/mob.2001.116371

145. Ethans KD, Nance PW, Bard RJ, Casey AR, Schryvers OI. Efficacy and Safety of Tol Terodine in People With Neurogenic Detrusor Overactivity. J Spinal Cord Med. 2004; 27(3): 214 - 218. doi: 10.1080/10790268.2004.11753751

146. Amend B, Hennenlotter J, Schafer T, Horstmann M, Stenzl A, Sievert KD. Effective Treatment of Neurogenic Detrusor Dysfunction by Combined High-Dosed Antimuscarinics without Increased Side-Effects. Eur Urol. 2008; 53(5): 1021 - 1028. doi: 10.1016/j.eururo.2008.01.007

147. Valiquette G, Herbert J, Meade-D'Alisera P. Desmopressin in the management of nocturia in patients with multiple sclerosis: A double-blind, crossover trial. Arch Neurol. 1996; 53(12): 1270 - 1275. doi: 10.1001/archneur.1996.00550120082020

148. Hilton P, Hertogs K, Stanton SL. The use of desmopressin (DDAVP) for nocturia in women with multiple sclerosis. J Neurol Neurosurg Psychiatry. 1983; 46(9): 854 - 855. doi: 10.1136/jnnp.46.9.854

149. Stankovich EIu, Borisov VV, Demina TL. Tamsulosin in the treatment of detrusor-sphincter dyssynergia of the urinary bladder in patients with multiple sclerosis. Urologiia. 2004; (4): 48 - 51

150. Шварц П.Г., Попов С.В. Нейрогенная хроническая задержка мочи у больных рассеянным склерозом. Трудный пациент, 2018; 6 (Том 16): 61 - 64

151. KhalafKM, CoyneKS, GlobeDR, etal. The impact of lower urinary tract symptoms on health-related quality of life among patients with multiple sclerosis. Neurourol Urodyn. 2016; 35(1): 48 - 54. doi: 10.1002/nau.22670

152. Mehnert U, Birzele J, Reuter K, Schurch B. The effect of botulinum toxin type a on overactive bladder symptoms in patients with multiple sclerosis: A pilot study. J Urol. 2010; 184(3): 1011 - 1016. doi: 10.1016/j.juro.2010.05.035

153. Gallien P, Reymann JM, Amarenco G, Nicolas B, De Seze M, Bellissant E. Placebo controlled, randomised, double blind study of the effects of botulinum A toxin on detrusor sphincter dyssynergia in multiple sclerosis patients. J Neurol Neurosurg Psychiatry. 2005; 76(12): 1670 - 1676. doi: 10.1136/jnnp.2004.045765

154. Schurch B, De Seze M, Denys P, et al. Botulinum toxin type A is a safe and effective treatment for neurogenic urinary incontinence: Results of a single treatment, randomized, placebo controlled 6-month study. J Urol. 2005; 174(1): 196 - 200. doi: 10.1097/01.ju.0000162035.73977.1c

155. Cruz F, Herschorn S, Aliotta P, et al. Efficacy and safety of onabotulinumtoxinA in patients with urinary incontinence due to neurogenic detrusor overactivity: A randomised, double-blind, placebo-controlled trial. Eur Urol. 2011; 60(4): 742 - 750. doi: 10.1016/j.eururo.2011.07.002

156. Mangera A, Andersson KE, Apostolidis A, et al. Contemporary management of lower urinary tract disease with botulinum toxin a: A systematic review of Botox (onabotulinumtoxinA) and Dysport (abobotulinumtoxinA). Eur Urol. 2011; 60(4): 784 - 795. doi: 10.1016/j.eururo.2011.07.001

157. Gold R, Oreja-Guevara C. Advances in the management of multiple sclerosis spasticity: Multiple sclerosis spasticity guidelines. In: Expert Review of Neurotherapeutics. Vol 13.; 2013: 55 - 59. doi: 10.1586/14737175.2013.865880

158. Otero-Romero S, Sastre-Garriga J, Comi G, et al. Pharmacological management of spasticity in multiple sclerosis: Systematic review and consensus paper. Mult Scler. 2016; 22(11): 1386 - 1396. doi: 10.1177/1352458516643600

159. Brar SP, Smith MB, Nelson LM, Franklin GM, Cobble ND. Evaluation of treatment protocols on minimal to moderate spasticity in multiple sclerosis. Arch Phys Med Rehabil. 1991; 72(3): 186 - 189. doi: 10.5555/uri:pii:0003999391901518

160. Feldman RG, Kelly-Hayes M, Conomy JP, Foley JM. Baclofen for spasticity in multiple sclerosis: Double-blind crossover and three-year study. Neurology. 1978; 28(11): 1094 - 1098. doi: 10.1212/wnl.28.11.1094

161. Hudgson P, Weightman D. Baclofen in the Treatment of Spasticity. Br Med J. 1971; 4(5778): 15 - 17. doi: 10.1136/bmj.4.5778.15

162. GB O, PS S, TK L, M R. Effect of Baclofen on Gait in Spastic MS Patients. Acta Neurol Scand. 2000; 101(4). doi: 10.1034/J.1600-0404.2000.101004244X./

163. Sachais BA, Logue JN, Carey MS. Baclofen, A New Antispastic Drug: A Controlled, Multicenter Trial in Patients With Multiple Sclerosis. Arch Neurol. 1977; 34(7): 422 - 428. doi: 10.1001/archneur.1977.00500190056008

164. Sawa GM, Paty DW. The Use of Baclofen in Treatment of Spasticity in Multiple Sclerosis. Can J Neurol Sci / J Can des Sci Neurol. 1979; 6(3): 351 - 354. doi: 10.1017/S0317167100023994

165. Cutter NC, Scott DD, Johnson JC, Whiteneck G. Gabapentin effect on spasticity in multiple sclerosis: A placebo-controlled, randomized trial. Arch Phys Med Rehabil. 2000; 81(2): 164 - 169. doi: 10.1016/s0003-9993(00)90135-7

166. Mueller ME, Gruenthal M, Olson WL, Olson WH. Gabapentin for relief of upper motor neuron symptoms in multiple sclerosis. Arch Phys Med Rehabil. 1997; 78(5): 521 - 524. doi: 10.1016/S0003-9993(97)90168-4

167. Dressler D, Bhidayasiri R, Bohlega S, et al. Botulinum toxin therapy for treatment of spasticity in multiple sclerosis: review and recommendations of the IAB-Interdisciplinary Working Group for Movement Disorders task force. J Neurol. 2017; 264(1): 112 - 120. doi: 10.1007/s00415-016-8304-z

168. Hyman N, Glickman S, Sayer A, et al. Botulinum toxin (Dysport(R)) treatment of hip adductor spasticity in multiple sclerosis: A prospective, randomised, double blind, placebo controlled, dose ranging study. J Neurol Neurosurg Psychiatry. 2000; 68(6): 707 - 712. doi: 10.1136/jnnp.68.6.707

169. Gusev YI, Banach M, Simonow A, et al. Efficacy and safety of botulinum type a toxin in adductor spasticity due to multiple sclerosis. J Musculoskelet Pain. 2008; 16(3): 175 - 188. doi: 10.1080/10582450802161952

170. Gracies JM, Esquenazi A, Brashear A, et al. Efficacy and safety of abobotulinumtoxinA in spastic lower limb: Randomized trial and extension. Neurology. 2017; 89(22): 2245 - 2253. doi: 10.1212/WNL.0000000000004687

171. Grazko MA, Polo KB, Jabbari B. Botulinum toxin A for spasticity, muscle spasms, and rigidity. Neurology. 1995; 45(4): 712 - 717. doi: 10.1212/WNL.45.4.712

172. Konstanzer A, Ceballos-Baumann A, Dressnandt J, Conrad B. Lokale Injektionsbehandlung mit Botulinum-Toxin A bei schwerer Arm- und Beinspastik [Local injection treatment with botulinum toxin A in severe arm and leg spasticity]. Nervenarzt. 1993; 64(8): 517 - 523.

173. Turhanoglu A, Karabulut Z, Bayram H, Turhanoglu S, Erdogan F. Botulinum toxin A in the treatment of spasticity-An open label study. J Back Musculoskelet Rehabil. 2002; 16: 51 - 56.

174. Fu X, Wang Y, Wang C, et al. A mixed treatment comparison on efficacy and safety of treatments for spasticity caused by multiple sclerosis: a systematic review and network meta-analysis. Clin Rehabil. 2018; 32(6): 713 - 721. doi: 10.1177/0269215517745348

175. Overview | Neuropathic pain in adults: pharmacological management in non-specialist settings | Guidance | NICE.

176. Sieminski M, Losy J, Partinen M. Restless legs syndrome in multiple sclerosis. Sleep Med Rev. 2015; 22: 15 - 22. doi: 10.1016/j.smrv.2014.10.002

177. Braley TJ, Chervin RD. A practical approach to the diagnosis and management of sleep disorders in patients with multiple sclerosis. Ther Adv Neurol Disord. 2015; 8(6): 294 - 310. doi: 10.1177/1756285615605698

178. Khan F, Amatya B. Rehabilitation in Multiple Sclerosis: A Systematic Review of Systematic Reviews. Arch Phys Med Rehabil. 2017; 98(2): 353 - 367. doi: 10.1016/j.apmr.2016.04.016

179. Khan F, Turner-Stokes L, Ng L, Kilpatrick T. Multidisciplinary rehabilitation for adults with multiple sclerosis. Cochrane Database Syst Rev. 2007; (2). doi: 10.1002/14651858.CD006036.pub2

180. Freeman JA, Langdon DW, Hobart JC, Thompson AJ. The impact of inpatient rehabilitation on progressive multiple sclerosis. Ann Neurol. 1997; 42(2): 236 - 244. doi: 10.1002/ana.410420216

181. Craig J, Young CA, Ennis M, Baker G, Boggild M. A randomised controlled trial comparing rehabilitation against standard therapy in multiple sclerosis patients receiving intravenous steroid treatment. J Neurol Neurosurg Psychiatry. 2003; 74(9): 1225 - 1230. doi: 10.1136/jnnp.74.9.1225

182. Francabandera FL, Holland NJ, Wiesel-Levison P, Scheinberg LC. Multiple Sclerosis Rehabilitation: Inpatient vs. Outpatient. Rehabil Nurs. 1988; 13(5): 251 - 253. doi: 10.1002/j.2048-7940.1988.tb00634.x

183. Asano M, Raszewski R, Finlayson M. Rehabilitation interventions for the management of multiple sclerosis relapse: A short scoping review. Int J MS Care. 2014; 16(2): 99 - 104. doi: 10.7224/1537-2073.2013-031

184. Liu C, Playford ED, Thompson AJ. Does neurorehabilitation have a role in relapsing-remitting multiple sclerosis? J Neurol. 2003; 250(10): 1214 - 1218. doi: 10.1007/s00415-003-0187-0

185. Baert I, Freeman J, Smedal T, et al. Responsiveness and clinically meaningful improvement, according to disability level, of five walking measures after rehabilitation in multiple sclerosis: A European multicenter study. Neurorehabil Neural Repair. 2014; 28(7): 621 - 631. doi: 10.1177/1545968314521010

186. Baert I, Smedal T, Kalron A, et al. Responsiveness and meaningful improvement of mobility measures following ms rehabilitation. Neurology. 2018; 91(20): E1880-E1892. doi: 10.1212/WNL.0000000000006532

187. Sackett DL, Rosenberg WMC, Gray JAM, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn't. 1996. Clin Orthop Relat Res. 2007; 455: 3 - 5. doi: 10.1136/bmj.312.7023.71

188. Khan F, Pallant JF, Brand C, Kilpatrick TJ. Effectiveness of rehabilitation intervention in persons with multiple sclerosis: A randomised controlled trial. J Neurol Neurosurg Psychiatry. 2008; 79(11): 1230 - 1235. doi: 10.1136/jnnp.2007.133777

189. Pozzilli C, Brunetti M, Amicosante AMV, et al. Home based management in multiple sclerosis: Results of a randomised controlled trial. J Neurol Neurosurg Psychiatry. 2002; 73(3): 250 - 255. doi: 10.1136/jnnp.73.3.250

190. Solari A, Filippini G, Gasco P, et al. Physical rehabilitation has a positive effect on disability in multiple sclerosis patients. Neurology. 1999; 52(1): 57 - 62. doi: 10.1212/wnl.52.1.57

191. WHO | International Classification of Functioning, Disability and Health (ICF). WHO. 2019.

192. Holper L, Coenen M, Weise A, Stucki G, Cieza A, Kesselring J. Characterization of functioning in multiple sclerosis using the ICF. J Neurol. 2010; 257(1): 103 - 113. doi: 10.1007/s00415-009-5282-4

193. Coenen M, Cieza A, Freeman J, et al. The development of ICF Core Sets for multiple sclerosis: results of the International Consensus Conference. J Neurol. 2011; 258(8): 1477 - 1488. doi: 10.1007/s00415-011-5963-7

194. Conrad A, Coenen M, Schmalz H, Kesselring J, Cieza A. Validation of the Comprehensive ICF Core Set for Multiple Sclerosis From the Perspective of Physical Therapists. Phys Ther. 2012; 92(6): 799 - 820. doi: 10.2522/ptj.20110056

195. Dalgas U, Stenager E, Jakobsen J, et al. Resistance training improves muscle strength and functional capacity in multiple sclerosis. Neurology. 2009; 73(18): 1478 - 1484. doi: 10.1212/WNL.0b013e3181bf98b4

196. White LJ, Castellano V. Exercise and brain health - Implications for multiple sclerosis: Part 1 - Neuronal growth factors. Sport Med. 2008; 38(2): 91 - 100. doi: 10.2165/00007256-200838020-00001

197. White LJ, Castellano V. Exercise and brain health - Implications for multiple sclerosis: Part II - Immune factors and stress hormones. Sport Med. 2008; 38(3): 179 - 186. doi: 10.2165/00007256-200838030-00001

198. Gottschalk M, Kumpfel T, Flachenecker P, et al. Fatigue and regulation of the hypothalamo-pituitary-adrenal axis in multiple sclerosis. Arch Neurol. 2005; 62(2): 277 - 280. doi: 10.1001/archneur.62.2.277

199. Heine M, van de Port I, Rietberg MB, van Wegen EEH, Kwakkel G. Exercise therapy for fatigue in multiple sclerosis. Cochrane Database Syst Rev. 2015; 2015(9). doi: 10.1002/14651858.CD009956.pub2

200. Asano M, Finlayson ML. Meta-Analysis of Three Different Types of Fatigue Management Interventions for People with Multiple Sclerosis: Exercise, Education, and Medication. Mult Scler Int. 2014; 2014. doi: 10.1155/2014/798285

201. Kargarfard M, Shariat A, Ingle L, Cleland JA, Kargarfard M. Randomized Controlled Trial to Examine the Impact of Aquatic Exercise Training on Functional Capacity, Balance, and Perceptions of Fatigue in Female Patients With Multiple Sclerosis. Arch Phys Med Rehabil. 2018; 99(2): 234 - 241. doi: 10.1016/j.apmr.2017.06.015

202. Corvillo I, Varela E, Armijo F, Alvarez-Badillo A, Armijo O, Maraver F. Efficacy of aquatic therapy for multiple sclerosis: A systematic review. Eur J Phys Rehabil Med. 2017; 53(6): 944 - 952. doi: 10.23736/S1973-9087.17.04570-1

203. Velikonja O, Curic K, Ozura A, Jazbec SS. Influence of sports climbing and yoga on spasticity, cognitive function, mood and fatigue in patients with multiple sclerosis. Clin Neurol Neurosurg. 2010; 112(7): 597 - 601. doi: 10.1016/j.clineuro.2010.03.006

204. Haselkorn JK, Hughes C, Rae-Grant A, et al. Summary of comprehensive systematic review: Rehabilitation in multiple sclerosis. Neurology. 2015; 85(21): 1896 - 1903. doi: 10.1212/WNL.0000000000002146

205. Steultjens EE, Dekker JJ, Bouter LM, Cardol MM, Van den Ende EC, van de Nes J. Occupational therapy for multiple sclerosis. Cochrane Database Syst Rev. 2003; (3). doi: 10.1002/14651858.cd003608

206. Lamers I, Maris A, Severijns D, et al. Upper limb rehabilitation in people with multiple sclerosis: A systematic review. Neurorehabil Neural Repair. 2016; 30(8): 773 - 793. doi: 10.1177/1545968315624785

207. Martinez-Assucena A, Marnetoft S-U, Rovira TR, Hernandez-San-Miguel J, Bernabeu M, Martinell-Gispert-Sauch M. Rehabilitation for Multiple Sclerosis, in Adults (II); Management and Impact on Impairment, Functioning, and Quality of Life: An Overview. Crit Rev Phys Rehabil Med. 2010; 22(1-4): 179 - 139. doi: 10.1615/CritRevPhysRehabilMed.v22.i1-4.100

208. Portillo MC, Corchon S, Lopez-Dicastillo O, Cowley S. Evaluation of a nurse-led social rehabilitation programme for neurological patients and carers: an action research study. Int J Nurs Stud. 2009; 46(2): 204 - 219. doi: 10.1016/j.ijnurstu.2008.09.012

209. Gunn H, Markevics S, Haas B, Marsden J, Freeman J. Systematic Review: The Effectiveness of Interventions to Reduce Falls and Improve Balance in Adults with Multiple Sclerosis. Arch Phys Med Rehabil. 2015; 96(10): 1898 - 1912. doi: 10.1016/j.apmr.2015.05.018

210. Ahmadi A, Arastoo AA, Nikbakht M, Zahednejad S, Rajabpour M. Comparison of the effect of 8 weeks aerobic and yoga training on ambulatory function, fatigue and mood status in MS patients. Iran Red Crescent Med J. 2013; 15(6): 449 - 454. doi: 10.5812/ircmj.3597

211. Hebert JR, Corboy JR, Vollmer T, Forster JE, Schenkman M. Efficacy of Balance and Eye-Movement Exercises for Persons With Multiple Sclerosis (BEEMS). Neurology. 2018; 90(9): e797 - e807. doi: 10.1212/WNL.0000000000005013

212. Gandolfi M, Munari D, Geroin C, et al. Sensory integration balance training in patients with multiple sclerosis: A randomized, controlled trial. Mult Scler. 2015; 21(11): 1453 - 1462. doi: 10.1177/1352458514562438

213. Brichetto G, Spallarossa P, De Carvalho MLL, Battaglia MA. The effect of Nintendo00000003.wmz Wii00000004.wmz on balance in people with multiple sclerosis: A pilot randomized control study. Mult Scler J. 2013; 19(9): 1219 - 1221. doi: 10.1177/1352458512472747

214. Casuso-Holgado MJ, Martin-Valero R, Carazo AF, Medrano-Sanchez EM, Cortes-Vega MD, Montero-Bancalero FJ. Effectiveness of virtual reality training for balance and gait rehabilitation in people with multiple sclerosis: a systematic review and meta-analysis. Clin Rehabil. 2018; 32(9): 1220 - 1234. doi: 10.1177/0269215518768084

215. Straudi S, Fanciullacci C, Martinuzzi C, et al. The effects of robot-assisted gait training in progressive multiple sclerosis: A randomized controlled trial. Mult Scler J. 2016; 22(3): 373 - 384. doi: 10.1177/1352458515620933

216. McGibbon CA, Sexton A, Jayaraman A, et al. Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: An open-label, randomized, cross-over trial. J Neuroeng Rehabil. 2018; 15(1). doi: 10.1186/s12984-018-0468-6

217. Afzal T, Tseng SC, Lincoln JA, Kern M, Francisco GE, Chang SH. Exoskeleton-assisted Gait Training in Persons With Multiple Sclerosis: A Single-Group Pilot Study. In: Archives of Physical Medicine and Rehabilitation. Vol 101. W.B. Saunders; 2020: 599 - 606. doi: 10.1016/j.apmr.2019.10.192

218. Miller L, McFadyen A, Lord AC, et al. Functional Electrical Stimulation for Foot Drop in Multiple Sclerosis: A Systematic Review and Meta-Analysis of the Effect on Gait Speed. Arch Phys Med Rehabil. 2017; 98(7): 1435 - 1452. doi: 10.1016/j.apmr.2016.12.007

219. Amatya B, Khan F, La Mantia L, Demetrios M, Wade DT. Non pharmacological interventions for spasticity in multiple sclerosis. Cochrane Database Syst Rev. 2013; 2013(2). doi: 10.1002/14651858.CD009974.pub2

220. Splinting for the Prevention and Correction of Contractures in Adults with Neurological Dysfunction Association of Chartered Physiotherapists in Neurology. www.COT.org.uk. Accessed April 15, 2020.

221. Harvey L, de Jong I, Goehl G, Mardwedel S. Twelve weeks of nightly stretch does not reduce thumb web-space contractures in people with a neurological condition: a randomised controlled trial. Aust J Physiother. 2006; 52(4): 251 - 258. doi: 10.1016/s0004-9514(06)70004-6

222. Lannin NA, Cusick A, McCluskey A, Herbert RD. Effects of splinting on wrist contracture after stroke: A randomized controlled trial. Stroke. 2007; 38(1): 111 - 116. doi: 10.1161/01.STR.0000251722.77088.12

223. Kinnear BZ, Lannin NA, Cusick A, Harvey LA, Rawicki B. Rehabilitation Therapies After Botulinum Toxin-A Injection to Manage Limb Spasticity: A Systematic Review. Phys Ther. 2014; 94(11): 1569 - 1581. doi: 10.2522/ptj.20130408

224. Rosti-OtajarviEM HP. Cochrane Library Cochrane Database of Systematic Reviews Neuropsychological rehabilitation for multiple sclerosis (Review). 2011. doi: 10.1002/14651858.CD009131.pub2

225. Rosti-OtajarviEM HP. Cochrane Library Cochrane Database of Systematic Reviews Neuropsychological rehabilitation for multiple sclerosis (Review). 2014. doi: 10.1002/14651858.CD009131.pub3

226. Nair das R, das NairR LN. Cochrane Library Cochrane Database of Systematic Reviews Memory Rehabilitation for people with multiple sclerosis (Review) Memory Rehabilitation for people with multiple sclerosis (Review). 2012. doi: 10.1002/14651858.CD008754.pub2

227. Bombardier CH, Ehde DM, Gibbons LE, et al. Telephone-based physical activity counseling for major depression in people with multiple sclerosis. J Consult Clin Psychol. 2013; 81(1): 89 - 99. doi: 10.1037/a0031242

228. Forman AC, Lincoln NB. Evaluation of an adjustment group for people with multiple sclerosis: A pilot randomized controlled trial. Clin Rehabil. 2010; 24(3): 211 - 221. doi: 10.1177/0269215509343492

229. Schiffer RB, Arnett P, Ben-Zacharia A, et al. The Goldman Consensus statement on depression in multiple sclerosis. Mult Scler. 2005; 11(3): 328 - 337. doi: 10.1191/1352458505ms1162oa

230. Patti F, Ciancio MR, Reggio E, et al. The impact of outpatient rehabilitation on quality of life in multiple sclerosis. J Neurol. 2002; 249(8): 1027 - 1033. doi: 10.1007/s00415-002-0778-1

231. Patti F, Ciancio MR, Cacopardo M, et al. Effects of a short outpatient rehabilitation treatment on disability of multiple sclerosis patients - A randomised controlled trial. J Neurol. 2003; 250(7): 861 - 866. doi: 10.1007/s00415-003-1097-x

232. Fiest KM, Walker JR, Bernstein CN, et al. Systematic review and meta-analysis of interventions for depression and anxiety in persons with multiple sclerosis. Mult Scler Relat Disord. 2016; 5: 12 - 26. doi: 10.1016/j.msard.2015.10.004

233. Khan F, Amatya B, Kesselring J, Galea MPG. Telerehabilitation for persons with multiple sclerosis. A Cochrane review. Eur J Phys Rehabil Med. 2015; 51(3): 311 - 325. doi: 10.1002/14651858.CD010508.pub2

234. Block V, Rivera M, Melnick M, Allen DD. Do physical therapy interventions affect urinary incontinence and quality of life in people with multiple sclerosis? Int J MS Care. 2015; 17(4): 172 - 180. doi: 10.7224/1537-2073.2014-031

235. Mahler ME. Behavioral manifestations associated with multiple sclerosis. Psychiatr Clin North Am. 1992; 15(2): 427 - 438. doi: 10.1016/s0193-953x(18)30247-8

236. Rodriguez M, Siva A, Ward J, Stolp-Smith K, O'brien P, Kurland L. Impairment, disability, and handicap in multiple sclerosis: A population-based study in olmsted county, minnesota. Neurology. 1994; 44(1): 28 - 33. doi: 10.1212/wnl.44.1.28

237. Soelberg Sorensen P, Giovannoni G, Montalban X, Thalheim C, Zaratin P, Comi G. The Multiple Sclerosis Care Unit. Mult Scler J. 2019; 25(5): 627 - 636. doi: 10.1177/1352458518807082

238. Avasarala JR, O'Donovan CA, Roach SE, Camacho F, Feldman SR. Analysis of NAMCS data for multiple sclerosis, 1998 - 2004. BMC Med. 2007; 5(1): 6. doi: 10.1186/1741-7015-5-6

239. Muller S, Heidler T, Fuchs A, et al. Real-World Treatment of Patients with Multiple Sclerosis per MS Subtype and Associated Healthcare Resource Use: An Analysis Based on 13,333 Patients in Germany. NeurolTher. 2020; 9(1): 67 - 83. doi: 10.1007/s40120-019-00172-5

240. Спирин Н., Бойко А., Степанов И., Шмидт Д. Ведение Пациентов Рассеянным Склерозом. Методические Рекомендации. Москва: РООИ "Здоровье человека"; 2015.

241. KaplanTB. ManagementofDemyelinatingDisordersinPregnancy. Neurol Clin. 2019; 37(1): 17 - 30. doi: 10.1016/j.ncl.2018.09.007

242. Попова Е., Кукель Т., Муравин А. Ретроспективный анализ течения беременности и родов у женщин с рассеянным склерозом. Журнал неврологии и психиатрии им С.С. Корсакова. 2013; 2(10): 52 - 56.

243. Попова Е., Коробко Д., Булатова Е. Ретроспективный анализ влияния беременности на течение рассеянного склероза. Журнал неврологии и психиатрии им. С.С. Корсакова. 2015; 2(8): 18 - 21.

244. Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. N Engl J Med. 1998; 339(5): 285 - 291. doi: 10.1056/NEJM199807303390501

245. Dickerson E, Davenport MS, Syed F, et al. Effect of Template Reporting of Brain MRIs for Multiple Sclerosis on Report Thoroughness and Neurologist-Rated Quality: Results of a Prospective Quality Improvement Project. J Am Coll Radiol. 2017; 14(3): 371 - 379.e1. doi: 10.1016/j.jacr.2016.09.037

246. Alrouji M, Manouchehrinia A, Gran B, Constantinescu CS. Effects of cigarette smoke on immunity, neuroinflammation and multiple sclerosis. J Neuroimmunol. 2019; 329: 24 - 34. doi: 10.1016/j.jneuroim.2018.10.004

247. Wingerchuk DM. Smoking: Effects on multiple sclerosis susceptibility and disease progression. Ther Adv Neurol Disord. 2012; 5(1): 13 - 22. doi: 10.1177/1756285611425694

248. Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosisAn update. Mult Scler Relat Disord. 2017; 14: 35 - 45. doi: 10.1016/j.msard.2017.03.014

249. Pierrot Deseilligny C, de Paz R, Souberbielle JC, Rivaud Pahoux S, Clerson P. Relationship between 25-OH-D serum level and relapse rate in multiple sclerosis patients before and after vitamin D supplementation. Ther Adv Neurol Disord. 2012; 5(4): 187 - 198. doi: 10.1177/1756285612447090

250. Laursen JH, Sondergaard HB, Sorensen PS, Sellebjerg F, Oturai AB. Vitamin D supplementation reduces relapse rate in relapsing-remitting multiple sclerosis patients treated with natalizumab. Mult Scler Relat Disord. 2016; 10: 169 - 173. doi: 10.1016/j.msard.2016.10.005

251. Rommer PS, Zettl UK, Kieseier B, et al. Requirement for safety monitoring for approved multiple sclerosis therapies: An overview. Clin Exp Immunol. 2014; 175(3): 397 - 407. doi: 10.1111/cei.12206

252. Wroe SJ. Effects of dose titration on tolerability and efficacy of interferon beta-1b in people with multiple sclerosis. J Int Med Res. 2005; 33(3): 309 - 318. doi: 10.1177/147323000503300306

253. Касаткин Д., Спирин Н., Бойко А., Власов Я. Унификация оценки побочных эффектов терапии препаратами, изменяющими течение рассеянного склероза. Журнал неврологии и психиатрии им. С.С. Корсакова. 2014; (2): 78 - 82.

254. WinkelmannA, LoebermannM, ReisingerEC, HartungHP, ZettlUK. Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol. 2016; 12(4): 217 - 233. doi: 10.1038/nrneurol.2016.21

255. Havla J, Warnke C, Derfuss T, Kappos L, Hartung HP, Hohlfeld R. Interdisciplinary risk management in the treatment of multiple sclerosis. Dtsch Arztebl Int. 2016; 113(51-52): 879 - 886. doi: 10.3238/arztebl.2016.0879

256. Linker RA, Wendt G. Cardiac Safety Profile of First Dose of Fingolimod for Relapsing-Remitting Multiple Sclerosis in Real-World Settings: Data from a German Prospective Multi-Center Observational Study. Neurol Ther. 2016; 5(2): 193 - 201. doi: 10.1007/s40120-016-0051-7

257. Schwab N, Schneider-Hohendorf T, Melzer N, Cutter G, Wiendl H. Natalizumab-associated PML: Challenges with incidence, resulting risk, and risk stratification. Neurology. 2017; 88(12): 1197 - 1205. doi: 10.1212/WNL.0000000000003739

258. Williamson EML, Berger JR. Diagnosis and Treatment of Progressive Multifocal Leukoencephalopathy Associated with Multiple Sclerosis Therapies. Neurotherapeutics. 2017; 14(4): 961 - 973. doi: 10.1007/s13311-017-0570-7

259. Polman CH, Bertolotto A, Deisenhammer F, et al. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol. 2010; 9(7): 740 - 750. doi: 10.1016/S1474-4422(10)70103-4

260. Goodin DS, Frohman EM, Hurwitz B, et al. Neutralizing antibodies to interferon beta: Assessment of their clinical and radiographic impact: An evidence report: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2007; 68(13): 977 - 984. doi: 10.1212/01.wnl.0000258545.73854.cf

261. Rudick RA, Polman CH. Current approaches to the identification and management of breakthrough disease in patients with multiple sclerosis. Lancet Neurol. 2009; 8(6): 545 - 559. doi: 10.1016/S1474-4422(09)70082-1

262. Sorensen PS, Koch-Henriksen N, Ross C, Clemmesen KM, Bendtzen K. Appearance and disappearance of neutralizing antibodies during interferon-beta therapy. Neurology. 2005; 65(1): 33 - 39. doi: 10.1212/01.WNL.0000166049.51502.6A

263. Kappos L, Clanet M, Sandberg-Wollheim M, et al. Neutralizing antibodies and efficacy of interferon 00000005.wmz-1a: A 4-year controlled study. Neurology. 2005; 65(1): 40 - 47. doi: 10.1212/01.wnl.0000171747.59767.5c

264. Бойко А.Н, Давыдовская М.В., Хачанова Н.В. и соавт. Клинические рекомендации по применению препарата окрелизумаб у пациентов с рассеянным склерозом. Ж. Неврология, нейропсихиатрия, психосоматика, 2019; N 11 (3) - С. 16 - 25

265. Алифирова В.М., Бисага Г.Н., Бойко А.Н. и соавт. Клинические рекомендации по применению препарата алемтузумаб (Лемтрада). Ж. Неврологии и психиатрии им. Корсакова, 2017; N 2 (2) - С. 115 - 126

266. Хачанова Н.В., Бахтиярова К.З., Бойко А.Н. и соавт. Обновленные рекомендации совета экспертов по применению и обеспечению безопасности терапии препаратом Алемтузумаб (Лемтрада). Ж. Неврологии и психиатрии им. Корсакова, 2020; N 120 (3) - С. 77 - 86

267. Евдошенко Е., Давыдовская М., Хачанова Н., Шумилина М. Рекомендации по тактике ведения пациентов с рассеянным склерозом, в период пандемии коронавирусной инфекции COVID-19. https://centrems.com/downloads/MAVRS-COVID-19.pdf. Published 2020. Accessed May 7, 2020.

268. ABN GUIDANCE ON THE USE OF DISEASE-MODIFYING THERAPIES IN MULTIPLE SCLEROSIS IN RESPONSE TO THE THREAT OF A CORONAVIRUS EPIDEMIC. 2020. doi: 10.1016/j.msard.2019.101468.[Epub

269. Indicazioni Sulla Gestione Del Paziente Con SM Nel Corso Di Epidemia Da COVID-19.

270. Global COVID-19 Advice for People with MS Advice for People with MS.

271. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020; 8(4): e21. doi: 10.1016/S2213-2600(20)30116-8

272. Chataway J, Porter B, Riazi A, et al. Home versus outpatient administration of intravenous steroids for multiple-sclerosis relapses: a randomised controlled trial. Lancet Neurol. 2006; 5(7): 565 - 571. doi: 10.1016/S1474-4422(06)70450-1

273. Hobart J, Bowen A, Pepper G, et al. International consensus on quality standards for brain health-focused care in multiple sclerosis. Mult Scler J. 2019; 25(13): 1809 - 1818. doi: 10.1177/1352458518809326

274. Lunny C, Knopp-Sihota JA, Fraser SN. Surgery and risk for multiple sclerosis: A systematic review and meta-analysis of case-control studies. BMC Neurol. 2013; 13. doi: 10.1186/1471-2377-13-41

275. De Lott LB, Zerafa S, Shedden K, et al. Multiple sclerosis relapse risk in the postoperative period: Effects of invasive surgery and anesthesia. Mult Scler J. 2020; 26(11): 1437 - 1440. doi: 10.1177/1352458519860304

276. Kytta J, Rosenberg PH. Anaesthesia for patients with multiple sclerosis. Ann Chir Gynaecol. 1984; 73(5): 299 - 303. http: //www.ncbi.nlm.nih.gov/pubmed/6524864. Accessed April 16, 2020.

277. Yeroushalmi S, Maloni H, Costello K, Wallin MT. Telemedicine and multiple sclerosis: A comprehensive literature review. J Telemed Telecare. 2020; 26(7-8): 400 - 413. doi: 10.1177/1357633X19840097

278. Xiang XM, Bernard J. Telehealth in Multiple Sclerosis Clinical Care and Research. Curr Neurol Neurosci Rep. 2021; 21(4). doi: 10.1007/s11910-021-01103-4

279. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol. 2011; 69(2): 292 - 302. doi: 10.1002/ana.22366

280. Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015; 85(2): 177 - 189. doi: 10.1212/WNL.0000000000001729

281. Шток В., Левин О. Справочник По Формулированию Клинического Диагноза Болезней Нервной Системы. Москва; 2006.

282. Ghezzi A, Amato MP, Annovazzi P. et al. Long-term results of immunomodulatory treatment in children and adolescents with multiple sclerosis: the Italian experience. 2009; 30(3): 193 - 199. doi: 10.1007/s10072-009-0083-1

283. Toledano, Michel; Weinshenker, Brian G.; Solomon, Andrew J. A Clinical Approach to the Differential Diagnosis of Multiple Sclerosis. Curr Neurol Neurosci Rep. 2015; 15 - 57. doi: 10.1007/s11910-015-0576-7

284. Ghezzi A. Therapeutic strategies in childhood multiple sclerosis. Ther Adv Neurol Disord. 2010; 3: 217 - 28. doi: 10.1177/1756285610371251

285. Phe V, Chartier-Kastler E, Panicker JN. Management of neurogenic bladder in patients with multiple sclerosis. Nat Rev Urol. 2016; 13(5): 275 - 288. doi: 10.1038/nrurol.2016.53

286. Freedman M.S. Teriflunomide in relapsing multiple sclerosis: therapeutic utility //Therapeutic Advances in Chronic Disease. - 2013. - Т. 4. - N. 5. - С. 192 - 205