к Руководству по безопасности
"Методы обоснования взрывоустойчивости
зданий и сооружений при взрывах
топливно-воздушных смесей на опасных
производственных объектах"
от 28 ноября 2022 г. N 413
Представлены результаты оценки риска взрыва ТВС при разрушении колонны химико-технологической установки, содержащей углеводородные компоненты, для обоснования взрывоустойчивости зданий на ОПО.
В результате катастрофического разрушения (сценарий Спр) без мгновенного загорания практически все содержимое парогазовой фазы колонны переходит в облако ТВС. При этом согласно термодинамическим расчетам Руководства по безопасности "Методика моделирования распространения аварийных выбросов опасных веществ", утвержденного приказом Ростехнадзора от 2 ноября 2022 г. N 385, температура в облаке ПГФ за счет адиабатического процесса расширения уменьшается с 42 °C до 7,46 °C, масса ПГФ составляет 24,5 т. Жидкая фаза (в нормальном технологическом режиме масса равна 76,85 т при температуре 95 °C) интенсивно вскипает. Состав ПГФ меняется, поскольку в пар переходят наиболее низкокипящие углеводороды (таблица N 1 настоящего приложения).
Состав ПГФ при аварийном выбросе
При расчете массы выброса полагалось, что аварийное реагирование на разрушение колонны происходит через 12 секунд, то есть происходит переключение потоков на их сброс на факел. В расчетах температуру облака ТВС консервативно принимали по наиболее холодной массе ПГФ, то есть в данном случае температура облака составляла t = - 11 C.
В таблице N 2 настоящего приложения N 5 дана характеристика также значения скоростей утечки при частичном разрушении (сценарии С1в,н - С5в,н) и условной вероятности реализации взрыва (дефлаграции), исключая пожар-вспышку.
Характеристики расчетных сценариев на колонне
Частоты выброса и условные вероятности определены согласно Руководству по безопасности "Методические основы анализа опасностей и оценки риска аварий на опасных производственных объектах", утвержденному приказом Ростехнадзора от 3 ноября 2022 г. N 387.
Для сценария полного разрушения Спр масштабы дрейфа облака ТВС определены для первичного облака. При дрейфе рассчитана масса облака ТВС, способная к взрывному превращению (рисунок 5-1, таблица N 3 настоящего приложения) с помощью программы TOKCИ+Risk. Рекомендуется учитывать, что согласно расчетам облако максимальной массы, способное к взрывному превращению, образуется за первую минуту дрейфа. Далее во времени масса уменьшается. При этом условия стабильности атмосферы и скорость ветра в основном влияют на смещение центра облака ТВС от эпицентра аварии, а за распространение облака ТВС в начальные моменты времени отвечают процессы гравитационного растекания облака.
Для сценариев с частичным разрушением колонны и утечек из аварийных отверстий (сценарии С1в,н - С5в,н) формирование облака ТВС проходит следующим образом. При переходе от инверсии к конвекции (от класса "F" к "A") масса облака ТВС существенно уменьшается при одинаковых скоростях ветра. Результаты для таких сценариев представлены в таблице N 5 настоящего приложения, где приводятся также характеристики последствий разрушения зданий и сооружений. Сценарии С1н, С1в и С2 не рассматривались, поскольку при этих сценариях аварий взрывоопасное облако не образуется или его масса менее 1 кг.
Рис. 5-1. Примеры изменения массы облака Мг при дрейфе в условиях изотермии со скоростями ветра 2 и 5 м/с
Характеристика расчетного сценария с полным разрушением
колонны Спр при дрейфе облака ТВС и последствий его взрыва
в дефлаграционном режиме (мгновенный выброс 84,9 т смеси
углеводородов с температурой t = - 11 °C)
Характеристика расчетного сценария С5н при дрейфе облака ТВС
и последствий его взрыва в дефлаграционном режиме (скорость
выброса = 175 кг/с, температура t = - 11 °C)
На рисунках 5-2 и 5-3 настоящего приложения представлены территориальные распределения потенциального риска разрушения зданий (частота превышения заданной величины ) для различных точек территории от аварий на опасном оборудовании площадки деэтанизатора.
Территориальное распределение потенциального риска разрушения зданий при при авариях на всех установках и системе трубопроводов со взрывом облака ТВС представлено на рисунке 5-4 настоящего приложения.
Рис. 5-2. Территориальное распределение потенциального риска разрушения зданий при при авариях на деэтанизаторе со взрывом облака ТВС
Рис. 5-3. Территориальное распределение потенциального риска разрушения зданий при при авариях на деэтанизаторе со взрывом облака ТВС
Рис. 5-4. Территориальное распределение потенциального риска разрушения зданий при при авариях на всех установках и в системе трубопроводов ОПО со взрывом облака ТВС
Рис. 5-5. Зависимости частоты Fk превышения избыточного давления на фронте УВ для различных зданий от величины
Результаты оценки риска взрыва, частоты разрушения различных зданий с учетом их удаленности от источников аварии, максимально возможного значения и проектного давления Pпр представлены в таблице N 5 и на рисунке 5-5 настоящего приложения.
Из результатов расчетов следует, что для всех зданий частота превышения расчетного проектного давления Pпр ниже 10-4 в год, что указывает на обоснованность принятых проектных решений по размещению и устойчивости зданий к ударной волне.
- Гражданский кодекс (ГК РФ)
- Жилищный кодекс (ЖК РФ)
- Налоговый кодекс (НК РФ)
- Трудовой кодекс (ТК РФ)
- Уголовный кодекс (УК РФ)
- Бюджетный кодекс (БК РФ)
- Арбитражный процессуальный кодекс
- Конституция РФ
- Земельный кодекс (ЗК РФ)
- Лесной кодекс (ЛК РФ)
- Семейный кодекс (СК РФ)
- Уголовно-исполнительный кодекс
- Уголовно-процессуальный кодекс
- Производственный календарь на 2025 год
- МРОТ 2024
- ФЗ «О банкротстве»
- О защите прав потребителей (ЗОЗПП)
- Об исполнительном производстве
- О персональных данных
- О налогах на имущество физических лиц
- О средствах массовой информации
- Производственный календарь на 2024 год
- Федеральный закон "О полиции" N 3-ФЗ
- Расходы организации ПБУ 10/99
- Минимальный размер оплаты труда (МРОТ)
- Календарь бухгалтера на 2024 год
- Частичная мобилизация: обзор новостей