112.7. Федеральная рабочая программа учебного курса "Алгебра и начала математического анализа"
112.7.1. Пояснительная записка.
112.7.1.1. Учебный курс "Алгебра и начала математического анализа" является одним из наиболее значимых в программе среднего общего образования, поскольку, с одной стороны, он обеспечивает инструментальную базу для изучения всех естественно-научных курсов, а с другой стороны, формирует логическое и абстрактное мышление обучающихся на уровне, необходимом для освоения информатики, обществознания, истории, словесности и других дисциплин. В рамках данного учебного курса обучающиеся овладевают универсальным языком современной науки, которая формулирует свои достижения в математической форме.
112.7.1.2. Учебный курс алгебры и начал математического анализа закладывает основу для успешного овладения законами физики, химии, биологии, понимания основных тенденций развития экономики и общественной жизни, позволяет ориентироваться в современных цифровых и компьютерных технологиях, уверенно использовать их для дальнейшего образования и в повседневной жизни. Овладение абстрактными и логически строгими конструкциями алгебры и математического анализа развивает умение находить закономерности, обосновывать истинность, доказывать утверждения с помощью индукции и рассуждать дедуктивно, использовать обобщение и конкретизацию, абстрагирование и аналогию, формирует креативное и критическое мышление.
112.7.1.3. В ходе изучения учебного курса "Алгебра и начала математического анализа" обучающиеся получают новый опыт решения прикладных задач, самостоятельного построения математических моделей реальных ситуаций, интерпретации полученных решений, знакомятся с примерами математических закономерностей в природе, науке и искусстве, с выдающимися математическими открытиями и их авторами.
112.7.1.4. Учебный курс обладает воспитательным потенциалом, который реализуется как через учебный материал, способствующий формированию научного мировоззрения, так и через специфику учебной деятельности, требующей продолжительной концентрации внимания, самостоятельности, аккуратности и ответственности за полученный результат.
112.7.1.5. В основе методики обучения алгебре и началам математического анализа лежит деятельностный принцип обучения.
112.7.1.6. В структуре учебного курса "Алгебра и начала математического анализа" выделены следующие содержательно-методические линии: "Числа и вычисления", "Функции и графики", "Уравнения и неравенства", "Начала математического анализа", "Множества и логика". Все основные содержательно-методические линии изучаются на протяжении двух лет обучения на уровне среднего общего образования, естественно дополняя друг друга и постепенно насыщаясь новыми темами и разделами. Данный учебный курс является интегративным, поскольку объединяет в себе содержание нескольких математических дисциплин, таких как алгебра, тригонометрия, математический анализ, теория множеств, математическая логика и другие. По мере того как обучающиеся овладевают все более широким математическим аппаратом, у них последовательно формируется и совершенствуется умение строить математическую модель реальной ситуации, применять знания, полученные при изучении учебного курса, для решения самостоятельно сформулированной математической задачи, а затем интерпретировать свой ответ.
112.7.1.6.1. Содержательно-методическая линия "Числа и вычисления" завершает формирование навыков использования действительных чисел, которое было начато на уровне основного общего образования. На уровне среднего общего образования особое внимание уделяется формированию навыков рациональных вычислений, включающих в себя использование различных форм записи числа, умение делать прикидку, выполнять приближенные вычисления, оценивать числовые выражения, работать с математическими константами. Множества натуральных, целых, рациональных и действительных чисел дополняются множеством комплексных чисел. В каждом из этих множеств рассматриваются свойственные ему специфические задачи и операции: деление нацело, оперирование остатками на множестве целых чисел, особые свойства рациональных и иррациональных чисел, арифметические операции, а также извлечение корня натуральной степени на множестве комплексных чисел. Благодаря последовательному расширению круга используемых чисел и знакомству с возможностями их применения для решения различных задач формируется представление о единстве математики как науки и ее роли в построении моделей реального мира, широко используются обобщение и конкретизация.
112.7.1.6.2. Линия "Уравнения и неравенства" реализуется на протяжении всего обучения на уровне среднего общего образования, поскольку в каждом разделе Программы предусмотрено решение соответствующих задач. В результате обучающиеся овладевают различными методами решения рациональных, иррациональных, показательных, логарифмических и тригонометрических уравнений, неравенств и систем, а также задач, содержащих параметры. Полученные умения широко используются при исследовании функций с помощью производной, при решении прикладных задач и задач на нахождение наибольших и наименьших значений функции. Данная содержательная линия включает в себя также формирование умений выполнять расчеты по формулам, преобразования рациональных, иррациональных и тригонометрических выражений, а также выражений, содержащих степени и логарифмы. Благодаря изучению алгебраического материала происходит дальнейшее развитие алгоритмического и абстрактного мышления обучающихся, формируются навыки дедуктивных рассуждений, работы с символьными формами, представления закономерностей и зависимостей в виде равенств и неравенств. Алгебра предлагает эффективные инструменты для решения практических и естественно-научных задач, наглядно демонстрирует свои возможности как языка науки.
112.7.1.6.3. Содержательно-методическая линия "Функции и графики" тесно переплетается с другими линиями учебного курса, поскольку в каком-то смысле задает последовательность изучения материала. Изучение степенной, показательной, логарифмической и тригонометрических функций, их свойств и графиков, использование функций для решения задач из других учебных предметов и реальной жизни тесно связано как с математическим анализом, так и с решением уравнений и неравенств. При этом большое внимание уделяется формированию умения выражать формулами зависимости между различными величинами, исследовать полученные функции, строить их графики. Материал этой содержательной линии нацелен на развитие умений и навыков, позволяющих выражать зависимости между величинами в различной форме: аналитической, графической и словесной. Его изучение способствует развитию алгоритмического мышления, способности к обобщению и конкретизации, использованию аналогий.
112.7.1.6.4. Содержательная линия "Начала математического анализа" позволяет существенно расширить круг как математических, так и прикладных задач, доступных обучающимся, так как у них появляется возможность строить графики сложных функций, определять их наибольшие и наименьшие значения, вычислять площади фигур и объемы тел, находить скорости и ускорения процессов. Данная содержательная линия открывает новые возможности построения математических моделей реальных ситуаций, позволяет находить наилучшее решение в прикладных, в том числе социально-экономических, задачах. Знакомство с основами математического анализа способствует развитию абстрактного, формально-логического и креативного мышления, формированию умений распознавать проявления законов математики в науке, технике и искусстве. Обучающиеся узнают о выдающихся результатах, полученных в ходе развития математики как науки, и об их авторах.
112.7.1.6.5. Содержательно-методическая линия "Множества и логика" включает в себя элементы теории множеств и математической логики. Теоретико-множественные представления пронизывают весь курс школьной математики и предлагают наиболее универсальный язык, объединяющий все разделы математики и ее приложений, они связывают разные математические дисциплины и их приложения в единое целое. Важно дать возможность обучающемуся понимать теоретико-множественный язык современной математики и использовать его для выражения своих мыслей. Другим важным признаком математики как науки следует признать свойственную ей строгость обоснований и следование определенным правилам построения доказательств. Знакомство с элементами математической логики способствует развитию логического мышления обучающихся, позволяет им строить свои рассуждения на основе логических правил, формирует навыки критического мышления.
112.7.1.7. В учебном курсе "Алгебра и начала математического анализа" присутствуют основы математического моделирования, которые призваны способствовать формированию навыков построения моделей реальных ситуаций, исследования этих моделей с помощью аппарата алгебры и математического анализа, интерпретации полученных результатов. Такие задания вплетены в каждый из разделов программы, поскольку весь материал учебного курса широко используется для решения прикладных задач. При решении реальных практических задач обучающиеся развивают наблюдательность, умение находить закономерности, абстрагироваться, использовать аналогию, обобщать и конкретизировать проблему. Деятельность по формированию навыков решения прикладных задач организуется в процессе изучения всех тем учебного курса "Алгебра и начала математического анализа".
112.7.1.8. Общее число часов, рекомендованных для изучения учебного курса "Алгебра и начала математического анализа" - 272 часа: в 10 классе - 136 часов (4 часа в неделю), в 11 классе - 136 часов (4 часа в неделю).
112.7.2. Содержание обучения в 10 классе.
112.7.2.1. Числа и вычисления.
Рациональные числа. Обыкновенные и десятичные дроби, проценты, бесконечные периодические дроби. Применение дробей и процентов для решения прикладных задач из различных отраслей знаний и реальной жизни.
Действительные числа. Рациональные и иррациональные числа. Арифметические операции с действительными числами. Модуль действительного числа и его свойства. Приближенные вычисления, правила округления, прикидка и оценка результата вычислений.
Степень с целым показателем. Бином Ньютона. Использование подходящей формы записи действительных чисел для решения практических задач и представления данных.
Арифметический корень натуральной степени и его свойства.
Степень с рациональным показателем и ее свойства, степень с действительным показателем.
Логарифм числа. Свойства логарифма. Десятичные и натуральные логарифмы.
Синус, косинус, тангенс, котангенс числового аргумента. Арксинус, арккосинус и арктангенс числового аргумента.
112.7.2.2. Уравнения и неравенства.
Тождества и тождественные преобразования. Уравнение, корень уравнения. Равносильные уравнения и уравнения-следствия. Неравенство, решение неравенства.
Основные методы решения целых и дробно-рациональных уравнений и неравенств. Многочлены от одной переменной. Деление многочлена на многочлен с остатком. Теорема Безу. Многочлены с целыми коэффициентами. Теорема Виета.
Преобразования числовых выражений, содержащих степени и корни.
Иррациональные уравнения. Основные методы решения иррациональных уравнений.
Показательные уравнения. Основные методы решения показательных уравнений.
Преобразование выражений, содержащих логарифмы.
Логарифмические уравнения. Основные методы решения логарифмических уравнений.
Основные тригонометрические формулы. Преобразование тригонометрических выражений. Решение тригонометрических уравнений.
Решение систем линейных уравнений. Матрица системы линейных уравнений. Определитель матрицы 2 x 2, его геометрический смысл и свойства, вычисление его значения, применение определителя для решения системы линейных уравнений. Решение прикладных задач с помощью системы линейных уравнений. Исследование построенной модели с помощью матриц и определителей.
Построение математических моделей реальной ситуации с помощью уравнений и неравенств. Применение уравнений и неравенств к решению математических задач и задач из различных областей науки и реальной жизни.
Функция, способы задания функции. Взаимно обратные функции. Композиция функций. График функции. Элементарные преобразования графиков функций.
Область определения и множество значений функции. Нули функции. Промежутки знакопостоянства. Четные и нечетные функции. Периодические функции. Промежутки монотонности функции. Максимумы и минимумы функции. Наибольшее и наименьшее значения функции на промежутке.
Линейная, квадратичная и дробно-линейная функции. Элементарное исследование и построение их графиков.
Степенная функция с натуральным и целым показателем. Ее свойства и график. Свойства и график корня n-ой степени как функции обратной степени с натуральным показателем.
Показательная и логарифмическая функции, их свойства и графики. Использование графиков функций для решения уравнений.
Тригонометрическая окружность, определение тригонометрических функций числового аргумента.
Функциональные зависимости в реальных процессах и явлениях. Графики реальных зависимостей.
112.7.2.4. Начала математического анализа.
Последовательности, способы задания последовательностей. Метод математической индукции. Монотонные и ограниченные последовательности. История возникновения математического анализа как анализа бесконечно малых.
Арифметическая и геометрическая прогрессии. Бесконечно убывающая геометрическая прогрессия. Сумма бесконечно убывающей геометрической прогрессии. Линейный и экспоненциальный рост. Число e. Формула сложных процентов. Использование прогрессии для решения реальных задач прикладного характера.
Непрерывные функции и их свойства. Точки разрыва. Асимптоты графиков функций. Свойства функций непрерывных на отрезке. Метод интервалов для решения неравенств. Применение свойств непрерывных функций для решения задач.
Первая и вторая производные функции. Определение, геометрический и физический смысл производной. Уравнение касательной к графику функции.
Производные элементарных функций. Производная суммы, произведения, частного и композиции функций.
112.7.2.5. Множества и логика.
Множество, операции над множествами и их свойства. Диаграммы Эйлера-Венна. Применение теоретико-множественного аппарата для описания реальных процессов и явлений, при решении задач из других учебных предметов.
Определение, теорема, свойство математического объекта, следствие, доказательство, равносильные уравнения.
112.7.3. Содержание обучения в 11 классе.
112.7.3.1. Числа и вычисления.
Натуральные и целые числа. Применение признаков делимости целых чисел, наибольший общий делитель (далее - НОД) и наименьшее общее кратное (далее - НОК), остатков по модулю, алгоритма Евклида для решения задач в целых числах.
Комплексные числа. Алгебраическая и тригонометрическая формы записи комплексного числа. Арифметические операции с комплексными числами. Изображение комплексных чисел на координатной плоскости. Формула Муавра. Корни n-ой степени из комплексного числа. Применение комплексных чисел для решения физических и геометрических задач.
112.7.3.2. Уравнения и неравенства.
Система и совокупность уравнений и неравенств. Равносильные системы и системы-следствия. Равносильные неравенства.
Отбор корней тригонометрических уравнений с помощью тригонометрической окружности. Решение тригонометрических неравенств.
Основные методы решения показательных и логарифмических неравенств.
Основные методы решения иррациональных неравенств.
Основные методы решения систем и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений.
Уравнения, неравенства и системы с параметрами.
Применение уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни, интерпретация полученных результатов.
График композиции функций. Геометрические образы уравнений и неравенств на координатной плоскости.
Тригонометрические функции, их свойства и графики.
Графические методы решения уравнений и неравенств. Графические методы решения задач с параметрами.
Использование графиков функций для исследования процессов и зависимостей, которые возникают при решении задач из других учебных предметов и реальной жизни.
112.7.3.4. Начала математического анализа.
Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке.
Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости и ускорения процесса, заданного формулой или графиком.
Первообразная, основное свойство первообразных. Первообразные элементарных функций. Правила нахождения первообразных.
Интеграл. Геометрический смысл интеграла. Вычисление определенного интеграла по формуле Ньютона-Лейбница.
Применение интеграла для нахождения площадей плоских фигур и объемов геометрических тел.
Примеры решений дифференциальных уравнений. Математическое моделирование реальных процессов с помощью дифференциальных уравнений.
112.7.4. Планируемые предметные результаты освоения федеральной рабочей программы учебного курса "Алгебра и начала математического анализа" на углубленном уровне на уровне среднего общего образования.
112.7.4.1. К концу обучения в 10 классе обучающийся получит следующие предметные результаты по отдельным темам федеральной рабочей программы учебного курса "Алгебра и начала математического анализа":
112.7.4.1.1. Числа и вычисления:
свободно оперировать понятиями: рациональное число, бесконечная периодическая дробь, проценты, иррациональное число, множества рациональных и действительных чисел, модуль действительного числа;
применять дроби и проценты для решения прикладных задач из различных отраслей знаний и реальной жизни;
применять приближенные вычисления, правила округления, прикидку и оценку результата вычислений;
свободно оперировать понятием: степень с целым показателем, использовать подходящую форму записи действительных чисел для решения практических задач и представления данных;
свободно оперировать понятием: арифметический корень натуральной степени;
свободно оперировать понятием: степень с рациональным показателем;
свободно оперировать понятиями: логарифм числа, десятичные и натуральные логарифмы;
свободно оперировать понятиями: синус, косинус, тангенс, котангенс числового аргумента;
оперировать понятиями: арксинус, арккосинус и арктангенс числового аргумента.
112.7.4.1.2. Уравнения и неравенства:
свободно оперировать понятиями: тождество, уравнение, неравенство, равносильные уравнения и уравнения-следствия, равносильные неравенства;
применять различные методы решения рациональных и дробно-рациональных уравнений, применять метод интервалов для решения неравенств;
свободно оперировать понятиями: многочлен от одной переменной, многочлен с целыми коэффициентами, корни многочлена, применять деление многочлена на многочлен с остатком, теорему Безу и теорему Виета для решения задач;
свободно оперировать понятиями: система линейных уравнений, матрица, определитель матрицы 2 x 2 и его геометрический смысл, использовать свойства определителя 2 x 2 для вычисления его значения, применять определители для решения системы линейных уравнений, моделировать реальные ситуации с помощью системы линейных уравнений, исследовать построенные модели с помощью матриц и определителей, интерпретировать полученный результат;
использовать свойства действий с корнями для преобразования выражений;
выполнять преобразования числовых выражений, содержащих степени с рациональным показателем;
использовать свойства логарифмов для преобразования логарифмических выражений;
свободно оперировать понятиями: иррациональные, показательные и логарифмические уравнения, находить их решения с помощью равносильных переходов или осуществляя проверку корней;
применять основные тригонометрические формулы для преобразования тригонометрических выражений;
свободно оперировать понятием: тригонометрическое уравнение, применять необходимые формулы для решения основных типов тригонометрических уравнений;
моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства по условию задачи, исследовать построенные модели с использованием аппарата алгебры.
112.7.4.1.3. Функции и графики:
свободно оперировать понятиями: функция, способы задания функции, взаимно обратные функции, композиция функций, график функции, выполнять элементарные преобразования графиков функций;
свободно оперировать понятиями: область определения и множество значений функции, нули функции, промежутки знакопостоянства;
свободно оперировать понятиями: четные и нечетные функции, периодические функции, промежутки монотонности функции, максимумы и минимумы функции, наибольшее и наименьшее значение функции на промежутке;
свободно оперировать понятиями: степенная функция с натуральным и целым показателем, график степенной функции с натуральным и целым показателем, график корня n-ой степени как функции обратной степени с натуральным показателем;
оперировать понятиями: линейная, квадратичная и дробно-линейная функции, выполнять элементарное исследование и построение их графиков;
свободно оперировать понятиями: показательная и логарифмическая функции, их свойства и графики, использовать их графики для решения уравнений;
свободно оперировать понятиями: тригонометрическая окружность, определение тригонометрических функций числового аргумента;
использовать графики функций для исследования процессов и зависимостей при решении задач из других учебных предметов и реальной жизни, выражать формулами зависимости между величинами;
112.7.4.1.4. Начала математического анализа:
свободно оперировать понятиями: арифметическая и геометрическая прогрессия, бесконечно убывающая геометрическая прогрессия, линейный и экспоненциальный рост, формула сложных процентов, иметь представление о константе;
использовать прогрессии для решения реальных задач прикладного характера;
свободно оперировать понятиями: последовательность, способы задания последовательностей, монотонные и ограниченные последовательности, понимать основы зарождения математического анализа как анализа бесконечно малых;
свободно оперировать понятиями: непрерывные функции, точки разрыва графика функции, асимптоты графика функции;
свободно оперировать понятием: функция, непрерывная на отрезке, применять свойства непрерывных функций для решения задач;
свободно оперировать понятиями: первая и вторая производные функции, касательная к графику функции;
вычислять производные суммы, произведения, частного и композиции двух функций, знать производные элементарных функций;
использовать геометрический и физический смысл производной для решения задач.
112.7.4.1.5. Множества и логика:
свободно оперировать понятиями: множество, операции над множествами;
использовать теоретико-множественный аппарат для описания реальных процессов и явлений, при решении задач из других учебных предметов;
свободно оперировать понятиями: определение, теорема, уравнение-следствие, свойство математического объекта, доказательство, равносильные уравнения и неравенства.
112.7.4.2. К концу обучения в 11 классе обучающийся получит следующие предметные результаты по отдельным темам федеральной рабочей программы учебного курса "Алгебра и начала математического анализа":
112.7.4.2.1. Числа и вычисления:
свободно оперировать понятиями: натуральное и целое число, множества натуральных и целых чисел, использовать признаки делимости целых чисел, НОД и НОК натуральных чисел для решения задач, применять алгоритм Евклида;
свободно оперировать понятием остатка по модулю, записывать натуральные числа в различных позиционных системах счисления;
свободно оперировать понятиями: комплексное число и множество комплексных чисел, представлять комплексные числа в алгебраической и тригонометрической форме, выполнять арифметические операции с ними и изображать на координатной плоскости.
112.7.4.2.2. Уравнения и неравенства:
свободно оперировать понятиями: иррациональные, показательные и логарифмические неравенства, находить их решения с помощью равносильных переходов;
осуществлять отбор корней при решении тригонометрического уравнения;
свободно оперировать понятием тригонометрическое неравенство, применять необходимые формулы для решения основных типов тригонометрических неравенств;
свободно оперировать понятиями: система и совокупность уравнений и неравенств, равносильные системы и системы-следствия, находить решения системы и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений и неравенств;
решать рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения и неравенства, содержащие модули и параметры;
применять графические методы для решения уравнений и неравенств, а также задач с параметрами;
моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства и их системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат.
112.7.4.2.3. Функции и графики:
строить графики композиции функций с помощью элементарного исследования и свойств композиции двух функций;
строить геометрические образы уравнений и неравенств на координатной плоскости;
свободно оперировать понятиями: графики тригонометрических функций;
применять функции для моделирования и исследования реальных процессов.
112.7.4.2.4. Начала математического анализа:
использовать производную для исследования функции на монотонность и экстремумы;
находить наибольшее и наименьшее значения функции непрерывной на отрезке;
использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах, для определения скорости и ускорения процесса, заданного формулой или графиком;
свободно оперировать понятиями: первообразная, определенный интеграл, находить первообразные элементарных функций и вычислять интеграл по формуле Ньютона-Лейбница;
находить площади плоских фигур и объемы тел с помощью интеграла;
иметь представление о математическом моделировании на примере составления дифференциальных уравнений;
решать прикладные задачи, в том числе социально-экономического и физического характера, средствами математического анализа.
- Гражданский кодекс (ГК РФ)
- Жилищный кодекс (ЖК РФ)
- Налоговый кодекс (НК РФ)
- Трудовой кодекс (ТК РФ)
- Уголовный кодекс (УК РФ)
- Бюджетный кодекс (БК РФ)
- Арбитражный процессуальный кодекс
- Конституция РФ
- Земельный кодекс (ЗК РФ)
- Лесной кодекс (ЛК РФ)
- Семейный кодекс (СК РФ)
- Уголовно-исполнительный кодекс
- Уголовно-процессуальный кодекс
- Производственный календарь на 2025 год
- МРОТ 2024
- ФЗ «О банкротстве»
- О защите прав потребителей (ЗОЗПП)
- Об исполнительном производстве
- О персональных данных
- О налогах на имущество физических лиц
- О средствах массовой информации
- Производственный календарь на 2024 год
- Федеральный закон "О полиции" N 3-ФЗ
- Расходы организации ПБУ 10/99
- Минимальный размер оплаты труда (МРОТ)
- Календарь бухгалтера на 2024 год
- Частичная мобилизация: обзор новостей